SC212c: Introduction to Statistics and Data Science

Professor: Jerzy Wieczorek
Office: Davis 213
Telephone: 859-5841
Email: jawiecz@colby.edu

Office hours: See our Moodle page

Class meetings: Lectures MWF 11:00 – 11:50 in Davis 201
+ 1 hour Lab in Davis 308 (Computer Lab)

Class materials: Available at our Moodle course site
by Lock, Lock, Lock, Lock, & Lock

Course description:

“Statistical thinking will one day be as necessary for efficient citizenship
as the ability to read and write.” - H.G. Wells

“For me, it is better to grasp the world as it really is than to persist in delusion,
however satisfying and reassuring.” - Carl Sagan

Statistics is the science of “making sense of data”. Virtually all fields utilize
statistics in some way. Not only that, but you are exposed to statistics (for better or
worst!) practically every day – when you browse the internet, watch a sporting event, or
listen to the news. Statistics are everywhere. This is true – even necessary – because data
are everywhere, more so now than at any other time in history. How can we use all of this
data to yield useful information? Extracting useful information requires more than learning a
laundry list of methods; it requires careful consideration of context and the ability to think
critically about data.

In this course, we will explore several tools that will help you make sense of data
and draw conclusions, including methods for data collection, displaying and analyzing data,
developing and testing hypotheses. We will use RStudio, a statistical software package, to
explore many real sets of data and to analyze them. Over the course of the semester, you
will learn how to use this software effectively and how to interpret output from it.
Additionally, we will spend considerable time learning and practicing how to communicate
results effectively.

Statistics IS NOT just list of methods. It is not “regression, T-tests, and ANOVA”.
You will most definitely learn about those topics in this class, but you will learn about the
underpinnings of statistics: What is bias? What is confounding? What is a sampling
distribution? Why should we care? When do traditional methods work? What should be
done when they don’t? And much more…
Course objectives:

By the end of the semester:

1. Students will understand the methods of data collection and the importance of utilizing appropriate sampling methods and experimental design procedures.

2. Students will be able to recognize which data analysis and data visualization methods are appropriate for a given situation.

3. Students will learn basic data manipulation and data cleaning skills.

4. Students will understand the limits of statistical inference and understand the assumptions behind common statistical methods.

5. Students will learn the implications of bias, variation and confounding in the context of statistical inference and methods to address and control them.

6. Students will become comfortable with the use of statistical software and the basics of computational thinking.

7. Students will understand the critical role statistics plays in research applications across a variety of disciplines.

8. Students will demonstrate the ability to communicate statistical results effectively. In particular, they will learn to formulate specific research questions, find and evaluate peer-reviewed literature and use it in a scientific report, write a scientific report that highlights their data analyses (i.e. introduction, methods, results, conclusion), and present their work in the form of a poster.

Topics covered:

Obtaining data/sampling
Observational studies and Experiments
Visualizing data/plotting
Data manipulation and data cleaning
Linear regression
Hypothesis testing and confidence intervals
Bootstrapping and Randomization tests
Density curves, the normal distribution, and the central limit theorem
Parametric hypothesis testing: t-tests, z-tests
Categorical data analysis: chi-square tests, fisher’s exact test
ANOVA: planned and unplanned comparisons
Inference for linear regression
Multiple linear regression
Additional topics, time permitting
Evaluation in SC212

Grades: Your course grade will be determined as follows (subject to change):

Writing components of course grade:
- Homework 10.0%
- Moodle assignments and labs 5.0%
- Project 22.0%

Exams:
- Exam #1 21.0%
- Exam #2 21.0%
- Exam #3 21.0%
- Total 100.0%

NOTE: IN ORDER TO PASS SC212 YOUR AVERAGE EXAM SCORE MUST EXCEED 60.0%.

Homework: Homework represents an important aspect of the course. Readings and selected problems will be assigned regularly. The assigned problems and due dates will appear in the Course Schedule on Moodle. Homework will require extensive use of the computer package RStudio. The assignments are designed to thoroughly test your knowledge of topics we discuss in class and are definitely not meant to be one-night jobs. Check Moodle for between-class announcements, hints, or modifications in assignments. Although you are encouraged to discuss problems with each other, I expect each person to submit his or her own work. You may choose to work with a partner on data analyses and thus produce the same computer output – that’s okay, but I want written interpretations and responses to be in your own words. And remember, an answer to a statistics question is almost never just a number – I want thoughtful explanations and conclusions!

Homework due dates and times will be posted on Moodle. Turn in hard-copy homework assignments at my office by 4pm on the due date. Late homework will reduce the student’s grade substantially (by 25% of the maximum score for each day late), and very late homeworks may not be accepted, in order to let the graders return everyone’s work quickly and give you timely feedback. The professor will not grant extensions except for documented illness or other extreme circumstances.

Class preparation and participation: Before class periods when no homework is due, you may be asked to complete exercises from the book or answer questions from recently covered material. You will be asked to electronically submit answers through Moodle to these questions an hour before class starts (so I can have a chance to look at them before class). Your responses will be scored as follows (2 points possible):

- 2 = thoughtful and thorough, 1 = half-hearted, 0 = none

The purpose of the Moodle responses is three-fold. First, they encourage you to preview the material before we discuss it in class. Second, they provide me with a better idea of what material you understand thoroughly, what material is proving to be difficult, and what material to cover in more depth during class time. Third, they give you the opportunity to relate your thoughts to me and/or ask questions outside of class.
Labs: Problem-based computing sessions will be held on weekly in a computer lab. The skills you learn during these sessions (and during regular class periods) are essential if you want to perform well on tests, homework assignments, and on your final project. The labs will be graded similar to the Moodle assignments. You will usually be able to complete the lab during lab time. **Turn in your lab to your SC212 lecture professor, not your lab professor.** As long as it’s finished and your answers are mostly correct, you’ll receive a score of 2. If you don’t finish the lab during lab time, you must turn it in by the end of the day on FRIDAY. Missing a lab will directly impact your class participation score and indirectly impact your homework, exam, and project grades. I strongly suggest that you don’t miss any of them.

Missing labs and/or Moodle responses: Over the course of the semester, you may skip a total of 2 responses/labs without penalty. Do not ask if you can submit a Moodle assignment or a Lab that is late – that is what the 2 skips are for.

Exams: The three midterm exams may involve both in-class and take-home components. These exams will focus on your ability to understand output from statistical software, to interpret results, to express an understanding of statistical concepts, and to engage in statistical thinking. They will not focus on plug-and-chug mathematics or elaborate computations.

See our Moodle page for the 3 exam dates. **You must meet with me within the first two weeks of classes if you need to reschedule an exam date or request accommodations.**

Project: An important part of this course is a group project to be completed by the end of the semester. The primary goal of the project is to give you an opportunity to demonstrate what you’ve learned throughout the semester. This is a team-oriented task that will require extensive writing, data analysis, critical thinking, and the construction of a poster. You will be completing assignments related to your project throughout the semester. No projects will be accepted after the due date. More detailed information about the project will be distributed at a later date.

Moodle: I’ll be posting all HW assignments and daily response questions on our Moodle site along with hints, schedule updates, and other important class-related info. Check the Moodle site early and often at https://moodle.colby.edu

Software: We’ll be using the software package RStudio to analyze data. Today, virtually all data analysis is done with the aid of at least one computer software package (phew!) – R is one of the most powerful and most flexible ones – it’s also probably the most widely used of all statistical packages. You can access RStudio via the web at:

https://rstudio.colby.edu

In addition to using and becoming familiar with this software, you will also need a calculator that can at least do square roots, logs, and exponential functions.

We’ll also make extensive use of the STATKEY website that accompanies the book. STATKEY is both a visual aid for understanding statistical concepts and a web-based tool that can perform statistical analyses.
Final exam: You will be REQUIRED to present your final poster (and answer questions about it) during our final exam time period.

FINAL EXAM / POSTER SESSION – TBA (tentatively Saturday, Dec 14, 1:30-4:30pm)

YOU MUST BE PRESENT – MAKE SURE YOUR TRAVEL PLANS DO NOT CONFLICT WITH THE FINAL!!!

Laptop use in class: Do not use electronic devices (e.g., computers, tablets, smart phones) during class. It is distracting for those around you, for lecturers, and for you(!). Please consult with me if you have concerns about this as a support for your learning needs.

Academic accommodations:
I am available to discuss academic accommodations that any student with a documented disability may require. Please note that you’ll need to provide a letter from the Dean of Studies Office documenting your approved accommodations. Please meet with me within two weeks of the start of the semester to make a request for accommodations so that we can work together with the College to make the appropriate arrangements for you. Kate McLaughlin, Associate Director of Access and Disability Services (kmclaugh@colby.edu) is the primary contact for accommodations and any questions related to educational testing and documentation.

Sexual misconduct/Title IX statement:
Colby College prohibits and will not tolerate sexual misconduct or gender-based discrimination of any kind. Colby is legally obligated to investigate sexual misconduct (including, but not limited to sexual assault and sexual harassment).
If you wish to speak confidentially about an incident of sexual misconduct, please contact Colby Counseling Services (207-859-4490) or the Director of the Gender and Sexual Diversity Program, Emily Schusterbauer (207-859-4093).
Students should be aware that faculty members are considered responsible employees; as such, if you disclose an incident of sexual misconduct to a faculty member, they have an obligation to report it to Colby’s Title IX Coordinator. “Disclosure” may include communication in-person, via email/phone/text, or through class assignments.
To learn more about sexual misconduct or report an incident, visit https://www.colby.edu/sexualviolence/

Academic honesty & consequences for academic dishonesty:
Honesty, integrity, and personal responsibility are cornerstones of a Colby education and provide the foundation for scholarly inquiry, intellectual discourse, and an open and welcoming campus community. These values are articulated in the Colby Affirmation and are central to this course. Students are expected to demonstrate academic honesty in all aspects of this course.
Academic dishonesty includes, but is not limited to: plagiarism (including quoting sources without “ ” around the borrowed words and a citation); presenting another’s work as one’s own; buying or attempting to buy papers or projects for a course; fabricating information or citations; knowingly assisting others in acts of academic dishonesty; violating clearly stated rules for taking an exam or completing homework;
misrepresentations to faculty within the context of a course; and submitting the same work, including an essay that you wrote, in more than one course without the permission of instructors.

Academic dishonesty is a serious offense against the college. Sanctions for academic dishonesty are assigned by an academic review board and may include failure on the assignment, failure in the course, or suspension or expulsion from the College.

For more on recognizing and avoiding plagiarism, see:
https://libguides.colby.edu/avoidingplagiarism

For resources and information on academic integrity, see:
https://www.colby.edu/academicintegrity/

The Colby Affirmation:

Colby College is a community dedicated to learning and committed to the growth and well-being of all its members. As a community devoted to intellectual growth, we value academic integrity. We agree to take ownership of our academic work, to submit only work that is our own, to fully acknowledge the research and ideas of others in our work, and to abide by the instructions and regulations governing academic work established by the faculty. As a community built on respect for ourselves, each other, and our physical environment, we recognize the diversity of people who have gathered here and that genuine inclusivity requires active, honest, and compassionate engagement with one another. We agree to respect each other, to honor community expectations, and to comply with College policies. As a member of this community, I pledge to hold myself and others accountable to these values.

https://www.colby.edu/catalogue/2014/07/11/colby-affirmation/