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The first working prototype of the Rubik’s Cube appeared in 1974. The puzzle became immensely popular worldwide within a few years, despite its apparent difficulty, and caused two things: it inspired the development of similar puzzles in other shapes, including the tetrahedral Pyraminx and the dodecahedral Megaminx, and created a demand for solutions to all of these puzzles. This paper defines basic group theory terms, proves an interesting theorem on the conditions necessary and sufficient to create a three-cycle, and uses the results of this theorem to outline the beginnings of a method for constructing solutions to Rubik’s-Cube-like puzzles.

The paper assumes some experience with the Cube, but a few terms must be defined. A piece is one of the tiny mobile “cubelets” which compose the Cube; there are eight corner pieces with three colored stickers each, and twelve edge pieces with two colored stickers each. There are also six center pieces, each of which rotates about the normal to the plane of its single sticker; however, these center pieces are fixed in place and do not move in relation to one another. Each center piece is at the center of a face of the Cube; the rotation of a face is the act of rotating the pieces on that face with respect to the rest of the Cube. Every rotation moves eight pieces (four corner pieces and four edge pieces) to new positions. A series of rotations is simply a particular combination of single face rotations done in a particular order.

A group is a nonempty set G closed under a binary operation; it must also contain an identity element, include an inverse for each element, and follow the associative law. The Rubik’s Cube can be described mathematically with the set of all series of rotations that can be performed on the six faces of the cube; its binary operation is the act of appending rotations in a particular order. A single 90º clockwise rotation of a face is usually notated by a capital letter: F (front), B (back), L (left), R (right), U (“up” or top), or D (“down” or bottom). A clockwise rotation is indicated by a prime symbol; for instance, F means “turn the front face 90º clockwise,” while F´ means “turn the front face 90º counterclockwise.” Concatenation of symbols shows the order in which to perform them; for example, FL´U means “front clockwise, left counterclockwise, top clockwise.”

The identity element is the act of not rotating any faces. The inverse for an element is the series of rotations that corresponds to performing the initial series of rotation backwards, in reverse order. For instance, the inverse of the element UR´ is RU´. Since the order in which rotations are performed does matter, the associative law simply indicates that groupings do not affect how we work with the Cube: R´(LU) is carried out the same way as (R´L)U.

A permutation is a function that rearranges some or all of the elements in a set. One particular type of group, known as the symmetric group Sn, involves the set of full permutations of n objects. For N = {1, 2, …, n}, Sn is the set of all one-to-one and onto mappings N→N. The elements of Sn are permutations of N; its binary operation is the composition of mappings—the act of combining two permutations in a certain order to create a new permutation. The Rubik’s Cube group is in fact a symmetric group, since each element is a series of rotations, which is in itself the permutation of some number of pieces on the Cube.

Permutations of numbers can be written using cycle notation, where (s1 s2 … sk) is called the k-cycle that sends si→si+1 and sk→s1. For instance, the cycle (1 2 3) sends element 1 to spot 2, 2 to 3, and 3 to 1. Every permutation can be decomposed into a series of transpositions, or 2-cycles. The example above can be written as (1 3)(1 2). Since cycles are carried out starting with the rightmost one and moving leftwards, we would send 1 to spot 2 and 2 to 1, then send the element in spot 1 (i.e., element 2) to 3 and send 3 to spot 1, giving us the same final result as (1 2 3). If a permutation decomposes into an even number of transpositions, it is called an even permutation, and otherwise an odd permutation. Combining two even permutations results in another even one, as does combining two odd permutations; the only combination that results in an odd permutation is the combination of one even and one odd. In particular, it is important to note that one cannot perform a single transposition (an odd permutation) using only even permutations.

The alternating group An is the half of Sn that consists solely of all its even permutations. It is certainly a closed group, since combining even permutations always results in other even ones. The other half of Sn, consisting of odd permutations, does not form a group because it is not closed under the binary operation—by combining odd permutations one obtains even ones, which are not in the set defined by the group.
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Figure 1

Every rotation of a face of the Cube can be described as permutation within two sets (edge pieces and corner pieces) of four elements each, as shown for an arbitrary face in Figure 1. This permutation can be written as two 4-cycles, namely (1 2 3 4)(A B C D). This decomposes into the even permutation (1 4)(1 3)(1 2)(A D)(A C)(A B). Every permutation on the Cube is a series of face rotations, and every face rotation is an even permutation; so every permutation on the Cube must be an even permutation. Hence, the Rubik’s Cube group belongs within the alternating group. In particular, it falls within A20, permuting twelve edges and eight corners. Since only even permutations are possible, we know that it is impossible to perform a transposition on the Cube: one cannot start with a solved Cube and end up in a state such that exactly two pieces are out of place.

The set of elements affected by a permutation is known as the support of that permutation. For example, the support of the 4-cycle (1 3 4 5) is {1, 3, 4, 5}. The support of the rotation shown in Figure 1 is the set of pieces labeled {1, 2, 3, 4, A, B, C, D}. 

One particularly useful combination of permutations is the commutator of permutations α and β, written [α, β] and defined as the sequence αβα-1β-1. This particular functions is always even, regardless of whether or not α and β are even. If α is even, then α-1 is also even, being merely the same series of transpositions performed backwards; if one is odd, so is the other. Of course, if α and β are even, [α, β] will be even as well, since each permutation in the sequence αβα-1β-1 is an even one. On the other hand, if α or β is not even, [α, β] will still be even because for each odd permutation it also contains a second one (the inverse of the first), and two odd permutations add up to an even one.

We will now tie all of these definitions and proofs together into one theorem which has many uses in group theory; in our case, it describes how to create a three-cycle on a Rubik’s Cube.

Theorem: If supp(α) Ç supp(β) = {x} is the single element x, then [α, β] is a
3-cycle with supp([α, β]) = {x, α(x), β(x)}. 

Proof: First, we show that for any element z Ï {x, α(x), β(x)}, it must be true that z Ï supp([α, β]). There are three possibilities: z Ï supp(α) È supp(β); z Î supp(α) but
z Ï supp(β); or z Î supp(β) but z Ï supp(α). In our first case, if z Ï supp(α) È supp(β), then z is not in the support of either function or its inverse, so it is not permuted at all by αβα-1β-1; hence, [α, β](z) = z.


In our second case, if z Î supp(α) but z Ï supp(β), z is permuted by α but returned to its original spot by α-1, unless after α it can be permuted by β. However, this would required that α(z) Î supp(β), which is impossible since by definition z cannot be α(x). So, since z remains unpermuted by β and β-1 at all times,
[α, β](z) = αβα-1β-1(z) = αα-1(z) = z.

The third case parallels the second, switching α and β. As long as z is not β(x), we can show that [α, β](z) = z.


We now know that the only three elements that may possibly be permuted by
[α, β] are x, α(x), and β(x). It is impossible to permute exactly one element, since every permuted element must be replaced by another one—either nothing is permuted, or at least two elements are permuted. In the commutator, we know that at least one element must be permuted; otherwise, αβα-1β-1 would simplify to 1 (the identity, the permutation which leaves all elements untouched), meaning that α = β; but we know that α ≠ β because supp(α) Ç supp(α) cannot be a single element x since α could then permute only a single element, which is not possible. Since we must permute at least one element but cannot permute only a single element, the commutator must permute at least two elements. Since we have shown it to be an even permutation, the commutator cannot permute exactly two elements (a single transposition is an odd permutation), so it must permute more than two elements: all three elements x, α(x), and β(x) must be in the support of the commutator when supp(α) Ç supp(β) = {x}. Q.E.D.

By playing around with the Cube for a while, one can find combinations of α and β as described above, such that their commutator is a three-cycle. There will be separate corner-only and edge-only three-cycles, since an edge cannot move to a corner spot and vice versa. After building a sufficiently large library of known three-cycles, one may solve a scrambled Cube by using these cycles to permute up to three pieces at a time into their correct positions. For any possible unsolved state of the Cube, some of the pieces can be always corrected with a three-cycle. A three-cycle would hinder more than it helped only if there were exactly two unsolved pieces left, but transpositions are not possible on the Cube, as we have already shown. Hence, a process of attrition—correctly placing scrambled pieces one, two, or three at a time until there are exactly three left, and then fixing those three simultaneously with an appropriate three-cycle—will suffice to solve the Cube.

This process is also valid for the Pyraminx and Megaminx puzzles. We know the commutator theorem is general enough to apply to these puzzles; the only question is whether or not transpositions may occur on them, requiring something other than a three-cycle to solve the puzzle. However, as Figure 2 shows, their face rotations both correspond to even permutations: (1 2 3) = (1 3)(1 2) in the case of the Pyraminx, and
(1 2 3 4 5)(A B C D E) = (1 5)(1 4)(1 3)(1 2)(A E)(A D)(A C)(A B) on the Megaminx. Hence each face rotation is an even permutation, so every series of rotations is also even, and transpositions are impossible, so a three-cycle solution will suffice here as well.
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Figure 2

However, this solution method does not generalize to the so-called Professor Cube, the 4-by-4-by-4 version of the Cube, which contains three sets of basic pieces—the corners, the left-hand edge pieces, and the right-hand edge pieces—resulting in an odd permutation. It is indeed possible to reach a state where the entire puzzle is solved except for two edge pieces, and a special series of rotations needs to be created to handle this eventuality. This solution also does not take into consideration the orientation of the pieces: even if every piece on the Cube is in the right position, they may still be oriented incorrectly and need to be flipped or turned. A complete discussion of orientations is beyond the scope of this paper. Nonetheless, three-cycles can actually be used to fix orientation problems, and the theorem outlined above is a good starting point for creating a full solution to the Rubik’s Cube and related polyhedral puzzles.
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