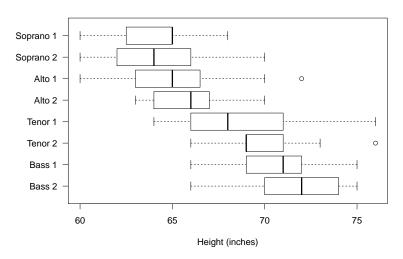
01 Introduction

36-721 Statistical Graphics and Visualization

Jerzy Wieczorek

9/1/15

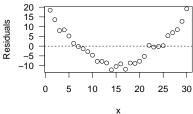
Examples and context


What good is data visualization?

What can we aspire to?

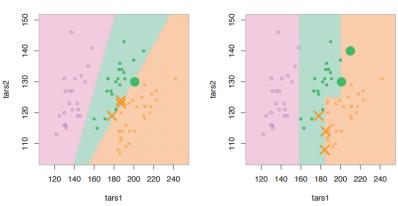
How do statistical graphics fit in with other flavors of visualization and information design?

Statistical graphics

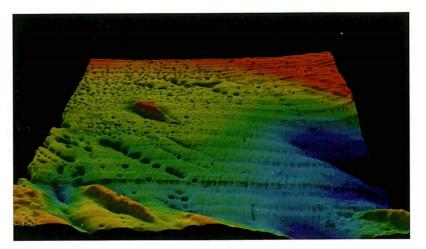

EDA

Statistical graphics

Regression diagnostics



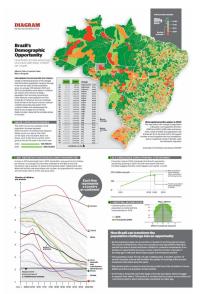
Statistical graphics


Classifier diagnostics

Cook & Swayne, Interactive and Dynamic Graphics for Data Analysis, With R and Ggobi

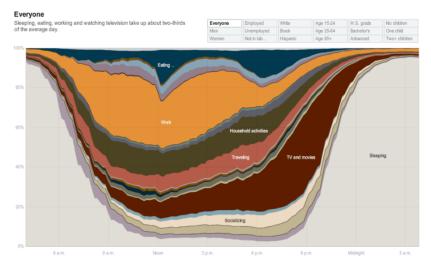
Scientific visualization

Ware, Information Visualization


Passamoquoddy Bay visualization. Data courtesy of the Canadian Hydrographic Service.

Statistical graphics and scientific visualization

- See a huge dataset all at once
- Find interesting features at different scales
- Notice data anomalies
- Propose scientific hypotheses

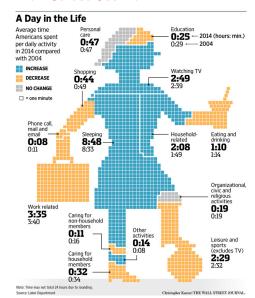

Infographics & data journalism

Static infographic by Alberto Cairo

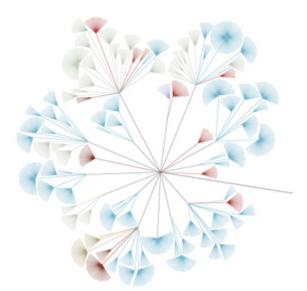
Infographics & data journalism

Interactive graphic by New York Times

Animation and narration


Hans Rosling's TED talks

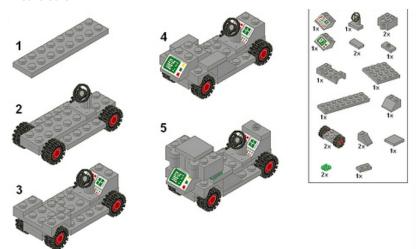
Watch 2:15-5:01 here



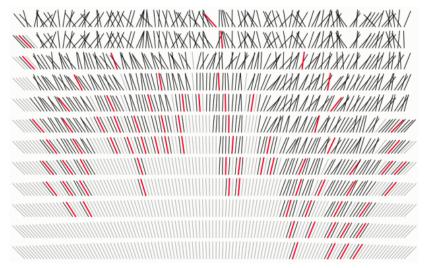
Data art

Wall Street Journal

Data art Stephanie Posavec


Information design, visual explanation

Wayfinding


Information design, visual explanation

Instruction

Information design, visual explanation

Visualizing algorithms

Course info

How is the class organized? How is it graded?

How would you organize this course?

What topics to cover? How to group them?

How I've organized this course

Course objectives (see Syllabus) are based on frameworks and principles

In class we will

- Look at graphics
- Discuss whether they work
- Propose reasons why they (don't) work
- Compare to frameworks/principles in the literature
- Critique graphs and make new ones using our principles
- Learn software tools as needed for implementation

Assessments

Each assessment (homework, critique, project) targets one of the learning objectives. No points—just a rubric for each assignment.

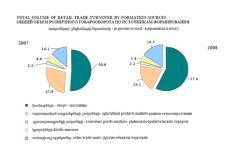
Final grade depends on which assignments you completed and how well (see Syllabus).

You can revise and resubmit. But first submissions must be on time and show sincere effort! (to keep grading manageable for us)

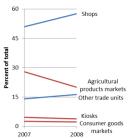
Syllabus

- Office hours and due dates
- Objectives
- Texts and software
- Assessments
- Administrivia
- Schedule

Be sure to note:


- ▶ Passing grade for CMU graduate students is B- or above.
- R software is required for Statistics MSPs.

Schedule of topics


What will we study?

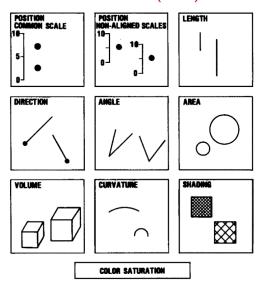
Readability and best practices

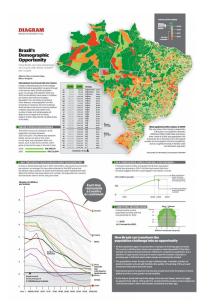
Armenian National Statistical Service and my own remake

Total Volume of Retail Trade Turnover by Formation Sources

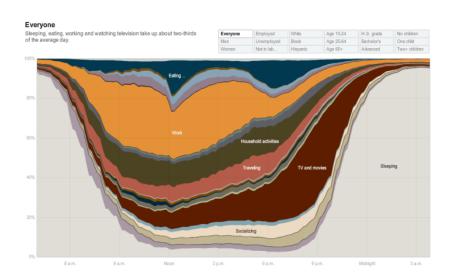
Human visual perception

Cleveland and McGill (1984)



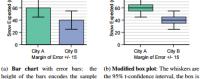

Figure 1. Elementary perceptual tasks.

The Grammar of Graphics


IBM's VizJSON, R's ggplot2, SPSS's GPL and Visualization Designer, Tableau. . .

Graphic design

Interaction design

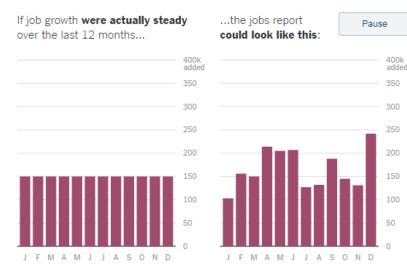

The dataviz research literature

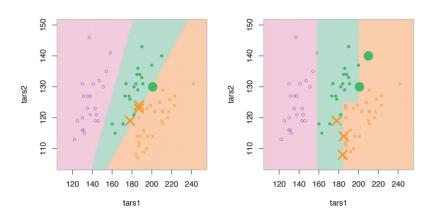
Correll and Gleicher (2014)

Error Bars Considered Harmful: Exploring Alternate Encodings for Mean and Error

Michael Correll Student Member, IEEE, and Michael Gleicher Member, IEEE

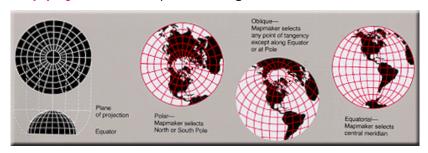
80



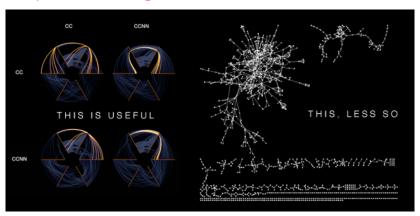

- height of the bars encodes the sample mean, and the whiskers encode a 95% t- a 50% t-confidence interval. confidence interval.
- the 95% t-confidence interval, the box is
- (c) Gradient plot: the transparency of the colored region corresponds to the cumulative density function of a tdistribution.
- (d) Violin plot: the width of the colored region corresponds to the probability density function of a t-distribution.

Communicating statistical ideas

Sampling variation, via New York Times



Graphics for statistical analysis

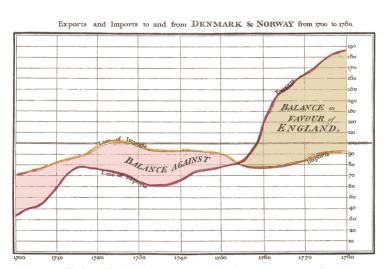

Maps and cartography

Map projections, choropleths, cartograms

Trees and networks

Hiveplot network diagrams

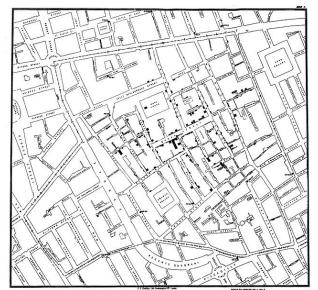
TBD—ideas


- Vector fields
- Data sonification
- ▶ D3.js practice
- ► Chart zoo
- ▶ Table design
- History of visualization
- Your topic here?

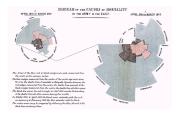
Historical classics

So you can nod and say, "Oh yeah, I know that one"

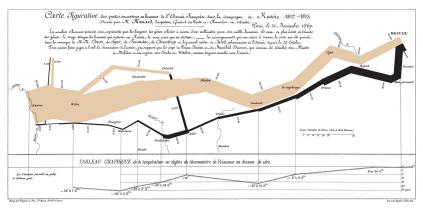
Playfair


Time series, 1786

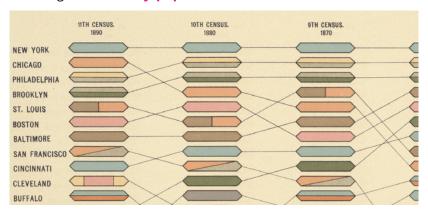
The Bottom line is divided into Years, the Right hand line into L19,000 each.
New ways 350, Small Lindon.
New ways 350, Small Lindon.


Snow

Cholera map, 1854


Nightingale

Polar area diagram, 1858


Minard

Napoleon's march, 1869

Statistical Atlas of the United States

Statistical Atlases by the U.S. Census Bureau, 1870-1890, including ranks of city populations 1790-1890

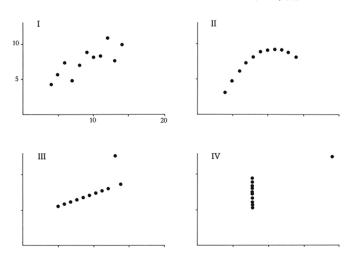
Neurath

Isotype, 1920s

Anscombe

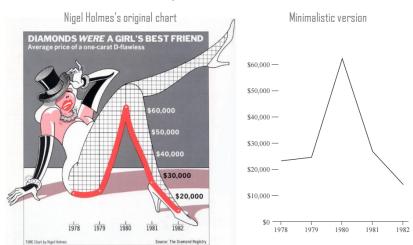
Anscombe's quartet, 1973 (via **Tufte**, *The Visual Display of Quantitative Information*)

Graphics reveal data. Indeed graphics can be more precise and revealing than conventional statistical computations. Consider Anscombe's quartet: all four of these data sets are described by exactly the same linear model (at least until the residuals are examined).

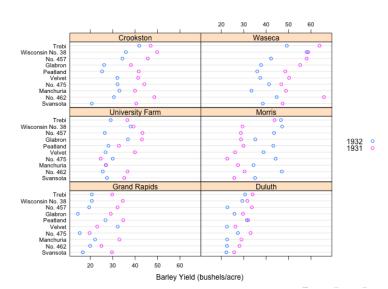

I		II		III		IV	
X	Y	X	Y	X	Y	X	Y
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

N = 11 mean of X's = 9.0 mean of Y's = 7.5 equation of regression line: Y = 3 + 0.5X standard error of estimate of slope = 0.118 t = 4.24 sum of squares $X - \overline{X} = 110.0$ regression sum of squares = 27.50 residual sum of squares of Y = 13.75 correlation coefficient = .82 $r^2 = .67$

Anscombe


And yet how they differ, as the graphical display of the data makes vividly clear:

F. J. Anscombe, "Graphs in Statistical Analysis," *American Statistician*, 27 (February 1973), 17–21.


Holmes vs. Tufte

Holmes, *TIME*, 1982(?); Tufte, *Envisioning Information*, p. 34; Cairo, *The Functional Art*, p. 61-70

Cleveland

Trellis dotplot of barley yield data (Cleveland, 1993), though see rejoinder

Classic books

- ► Bertin, Semiology of Graphics
- Cleveland, The Elements of Graphing Data and Visualizing Data
- ► Wilkinson, *The Grammar of Graphics*
- ► Tufte, The Visual Display of Quantitative Information and Envisioning Information
- ► Wainer, *Visual Revelations* and others

Next time

What to prepare? What'll we cover?

Prepare for next time

- ▶ Install and test-drive your statistical graphics software
- ▶ Look at HW1 (data + rubric), let me know if unclear
- ▶ Readings: Cairo Ch 1-4; Donahue p. 1-23
- Blogs to follow
 - ► Nathan Yau
 - ► Alberto Cairo
 - ► Robert Kosara
 - Kaiser Fung
 - ▶ Di Cook

Next time we'll cover

- ▶ Best practices for most common 1D/2D charts and tables
- Image formats, resolution, saving plots
- ► A few handy tricks (logs, loess, jitter)
- ▶ R users: bring laptops to follow along

Software installation

Let's get everything installed and debugged to prepare for future classes.

Software installation

- ▶ Who'll use R? What else will be used?
- R users: install and test-drive
 - R and RStudio
 - ggplot2, knitr, shiny packages
- ► Tableau users: install student license
 - www.tableau.com/academic/students
- Also consider
 - ▶ D3.js
 - Inkscape