03 Visual Perception

36-721 Statistical Graphics and Visualization

Jerzy Wieczorek

9/8/15

(ロ)、(型)、(E)、(E)、 E) の(()

Last time

- Legible graphs: image format and quality
- Comprehensible graphs: labels, titles, and annotations

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Core charts in base R
- ► HW 1

Today

- Quantitative comparisons: basic perceptual tasks, distance
- Grouping and search: preattentive processing, gestalt, separable dimensions, alignment
- Cognition: derived variables, ranking
- Consistency: across small multiples, in design, with semantic associations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- R: choosing color, point symbol, line type
- text, matplot, RColorBrewer
- mfrow, layout, mtext

Today

Follow along:

- Editable code in 03_Perception_code.R
- Code with output examples in 03_Perception_code.html

(ロ)、(型)、(E)、(E)、 E) の(()

Quantitative comparisons

Basic perceptual tasks

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Distance

Quantitative comparisons

Experiment on next few slides:

	А	В	С	D
Positions	1	?	?	?
Lengths	1	?	?	?
Angles	1	?	?	?
Areas	1	?	?	?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Quantitative perceptual tasks: position, aligned

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Quantitative perceptual tasks: length

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Quantitative perceptual tasks: angle

Quantitative perceptual tasks: area

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Quantitative perceptual tasks: answers

	А	В	С	D
Positions	1	3/4	1/4	2/4
Lengths	1	2/4	3/4	1/4
Angles	1	2/3	1/3	4/3
Areas	1	2/4	1/4	3/4

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Cleveland and McGill (1984)

Cleveland, The Elements of Graphing Data

Quantitative perceptual tasks: effect of angle orientation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Same angle looks wider when bisector is horizontal.

Ordering of perceptual tasks

Cleveland and McGill's ordering

Allows more accurate comparisons

2D position along common, aligned scale

2D position along common, but unaligned scales

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Ordering of perceptual tasks

Allows more generic comparisons

Colour intensity

Volume

Area

Colour hue

Distance

<ロト <回ト < 回ト < 回ト

3

Cleveland and McGill (1984)

Quantitative perceptual tasks

Lessons:

- Best to show quantitative variables with position or length
- Bars encode length, so start bars at 0; to zoom in, use dotplots (position) instead

- Avoid stacked bars (not aligned); use dots or lines (aligned baselines) instead
- Avoid pies, area, and volume entirely
- Choose and order hues sensibly; use Color Brewer
- Place things-to-be-compared near each other

Grouping and Search

- Preattentive processing
- Gestalt
- Separable dimensions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Alignment

Preattentive processing: example task

Find and count the 6s

0	5	0	8	2	4	9	3	2	0	6	9	0	0	3	0	4	6	2	7	
9	0	1	1	7	9	9	7	9	3	4	6	4	4	9	7	4	8	0	7	
3	7	6	5	2	7	5	9	5	5	9	2	7	3	1	0	0	3	6	8	
4	4	5	5	4	6	7	2	7	3	2	4	3	8	5	0	3	6	2	7	
4	7	4	1	5	5	1	8	1	3	7	9	9	1	1	2	2	1	5	2	

(ロ)、(型)、(E)、(E)、(E)、(O)()

Preattentive processing: example task

Find and count the 6s now

0	5	0	8	2	4	9	3	2	0	6	9	0	0	3	0	4	6	2	7	
9	0	1	1	7	9	9	7	9	3	4	6	4	4	9	7	4	8	0	7	
3	7	6	5	2	7	5	9	5	5	9	2	7	3	1	0	0	3	6	8	
4	4	5	5	4	6	7	2	7	3	2	4	3	8	5	0	3	6	2	7	
4	7	4	1	5	5	1	8	1	3	7	9	9	1	1	2	2	1	5	2	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

We automatically process and notice certain features, while others require conscious thought to find

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We process faster when there are few categories to distinguish

Preattentive processing: features

Colin Ware, Information Visualization

Preattentive processing: features

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

Preattentive processing

Lessons

- Distinguish categorical groups by features like hue & shape
- Hue also lets you use direct labels instead of a legend
- Don't try to show too many groups on one plot; use small multiples to show more sub-groups

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

If highlighting one group, use a preattentive attribute

Gestalt

Gestalt = "pattern" in German

We automatically structure data into patterns / groups using certain features

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Gestalt

Lessons

- Distinguish categorical groups by similarity, proximity, or enclosure
- Use proximity to structure your layout (arrange small multiples)
- Use connection to show groups on line chart, parallel coordinates chart, network graph, etc.
- To highlight one group, use gestalt principles such as enclosure or similarity

Separable dimensions

Some examples from Colin Ware, *Information Visualization* <- More integral ... More separable ->

Integral dimensions example

US Census Bureau map using hue and saturation

Sac

э

Separable dimensions

Lessons

- Use color and another variable (shape, size, orientation, motion)
- Use small multiples rather than different plotting symbols

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Avoid mixing 2 aspects of color, or 2 aspects of size
- Don't combine too many grouping variables at once

Alignment

Among male newborns, compare by race

Alignment

Among male newborns, compare by race: easier search now, though harder comparison

Alignment

Lessons

 Decide on visual task, and helpfully align elements to be compared

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

During EDA, try several arrangements

Cognition

Derived variables

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Ranking

Derived variables

William Playfair, one of the earliest line charts What does the difference look like?

> CHART of EXPORTS and IMPORTS to and from the EAST INDIES From the Year 1700 to 1780 by W. Playfair

Derived variables

Differences shown directly, by Cleveland and McGill

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Ranking: alphabetical

Western state areas (1000s of sq miles)

Ranking: informative

Western state areas (1000s of sq miles)

Derived variables and Ranking

Lessons

- If differences or ratios are interesting, compute and plot them directly
- Order your dots/bars meaningfully: ranked by a variable, not alphabetical

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- Across small multiples
- In design
- With semantic associations

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Which age group weighs the least?

Age (months)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Give all small multiples the same structure, usually **including axis limits**, to make comparisons easier and reduce cognitive load

Age (months)

◆□ → ◆□ → ◆ □ → ◆ □ → □ □

Ensure design changes are meaningful (tied to data changes)

100

・ロト・四ト・ (中下・) (中下・) (日)

More consistent redesign, Stephen Few

Avoid meaningless visual variables like shadow or 3D

STRUCTURE OF SERVICES 2007

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Lessons

- Use consistent mappings (colors and shapes, axis limits) across graphs
- Don't reuse same mappings for a different data variable
- Avoid meaningless variety in design
- Avoid shadow, 3D, and other variables not mapped to data

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Semantic associations

Orange vs blue crab species: I've seen this in a talk (crabs dataset in MASS package)

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへ(で)

Semantic associations

Lessons

- Use meaningful mappings: orange vs blue crab species = orange and blue symbols
- ▶ Use conventional mappings: blue = cold, red = hot
- "More = more": deeper saturation or larger size = higher value of variable

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Choosing color, point symbol, line type

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- text, matplot, RColorBrewer
- mfrow, layout, mtext

For next time

 We'll cover the Grammar of Graphics framework, and how it is the basis for ggplot2 and Tableau

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

HW 2 due Saturday at 5pm, through Blackboard