03 Visual Perception

36-721 Statistical Graphics and Visualization

Jerzy Wieczorek

9/8/15

Last time

- Legible graphs: image format and quality
- Comprehensible graphs: labels, titles, and annotations
- Core charts in base R
- HW 1

Today

- Quantitative comparisons: basic perceptual tasks, distance
- Grouping and search: preattentive processing, gestalt, separable dimensions, alignment
- Cognition: derived variables, ranking
- Consistency: across small multiples, in design, with semantic associations
- R: choosing color, point symbol, line type
- text, matplot, RColorBrewer
- mfrow, layout, mtext

Today

Follow along:

- Editable code in 03_Perception_code.R
- Code with output examples in 03_Perception_code.html

Quantitative comparisons

- Basic perceptual tasks
- Distance

Quantitative comparisons

Experiment on next few slides:

	A	B	C	D
Positions	1	$?$	$?$	$?$
Lengths	1	$?$	$?$	$?$
Angles	1	$?$	$?$	$?$
Areas	1	$?$	$?$	$?$

Quantitative perceptual tasks: position, aligned

Quantitative perceptual tasks: length

Quantitative perceptual tasks: angle

Quantitative perceptual tasks: area

Quantitative perceptual tasks: answers

	A	B	C	D
Positions	1	$3 / 4$	$1 / 4$	$2 / 4$
Lengths	1	$2 / 4$	$3 / 4$	$1 / 4$
Angles	1	$2 / 3$	$1 / 3$	$4 / 3$
Areas	1	$2 / 4$	$1 / 4$	$3 / 4$

Cleveland and McGill (1984)
Cleveland, The Elements of Graphing Data

Quantitative perceptual tasks: effect of angle orientation

Same angle looks wider when bisector is horizontal.

Ordering of perceptual tasks

Cleveland and McGill's ordering

Ordering of perceptual tasks

Distance

Figure 4. Graphs from position-length experiment.

Cleveland and McGill (1984)

Quantitative perceptual tasks

Lessons:

- Best to show quantitative variables with position or length
- Bars encode length, so start bars at 0; to zoom in, use dotplots (position) instead
- Avoid stacked bars (not aligned); use dots or lines (aligned baselines) instead
- Avoid pies, area, and volume entirely
- Choose and order hues sensibly; use Color Brewer
- Place things-to-be-compared near each other

Grouping and Search

- Preattentive processing
- Gestalt
- Separable dimensions
- Alignment

Preattentive processing: example task

Find and count the 6s

$$
\begin{array}{llllllllllllllllllll}
0 & 5 & 0 & 8 & 2 & 4 & 9 & 3 & 2 & 0 & 6 & 9 & 0 & 0 & 3 & 0 & 4 & 6 & 2 & 7 \\
9 & 0 & 1 & 1 & 7 & 9 & 9 & 7 & 9 & 3 & 4 & 6 & 4 & 4 & 9 & 7 & 4 & 8 & 0 & 7 \\
3 & 7 & 6 & 5 & 2 & 7 & 5 & 9 & 5 & 5 & 9 & 2 & 7 & 3 & 1 & 0 & 0 & 3 & 6 & 8 \\
4 & 4 & 5 & 5 & 4 & 6 & 7 & 2 & 7 & 3 & 2 & 4 & 3 & 8 & 5 & 0 & 3 & 6 & 2 & 7 \\
4 & 7 & 4 & 1 & 5 & 5 & 1 & 8 & 1 & 3 & 7 & 9 & 9 & 1 & 1 & 2 & 2 & 1 & 5 & 2
\end{array}
$$

Preattentive processing: example task

Find and count the 6 s now

$$
\begin{array}{llllllllllllllllllll}
0 & 5 & 0 & 8 & 2 & 4 & 9 & 3 & 2 & 0 & 6 & 9 & 0 & 0 & 3 & 0 & 4 & 6 & 2 & 7 \\
9 & 0 & 1 & 1 & 7 & 9 & 9 & 7 & 9 & 3 & 4 & 6 & 4 & 4 & 9 & 7 & 4 & 8 & 0 & 7 \\
3 & 7 & 6 & 5 & 2 & 7 & 5 & 9 & 5 & 5 & 9 & 2 & 7 & 3 & 1 & 0 & 0 & 3 & 6 & 8 \\
4 & 4 & 5 & 5 & 4 & 6 & 7 & 2 & 7 & 3 & 2 & 4 & 3 & 8 & 5 & 0 & 3 & 6 & 2 & 7 \\
4 & 7 & 4 & 1 & 5 & 5 & 1 & 8 & 1 & 3 & 7 & 9 & 9 & 1 & 1 & 2 & 2 & 1 & 5 & 2
\end{array}
$$

Preattentive processing

We automatically process and notice certain features, while others require conscious thought to find

We process faster when there are few categories to distinguish

Preattentive processing: features

Colin Ware, Information Visualization

Shape

Curved/straight

Size

Shape

Number

Preattentive processing: features

Addition

Enclosure

Juncture

Convexity/concavity

Parallelism

Preattentive processing

Lessons

- Distinguish categorical groups by features like hue \& shape
- Hue also lets you use direct labels instead of a legend
- Don't try to show too many groups on one plot; use small multiples to show more sub-groups
- If highlighting one group, use a preattentive attribute

Gestalt

Gestalt $=$ "pattern" in German
We automatically structure data into patterns / groups using certain features

Enclosure

Connection

Gestalt

Lessons

- Distinguish categorical groups by similarity, proximity, or enclosure
- Use proximity to structure your layout (arrange small multiples)
- Use connection to show groups on line chart, parallel coordinates chart, network graph, etc.
- To highlight one group, use gestalt principles such as enclosure or similarity

Separable dimensions

Some examples from Colin Ware, Information Visualization <- More integral ... More separable ->

Integral dimensions example

US Census Bureau map using hue and saturation

Separable dimensions

Lessons

- Use color and another variable (shape, size, orientation, motion)
- Use small multiples rather than different plotting symbols
- Avoid mixing 2 aspects of color, or 2 aspects of size
- Don't combine too many grouping variables at once

Alignment

Among male newborns, compare by race

Alignment

Among male newborns, compare by race: easier search now, though harder comparison

Alignment

Lessons

- Decide on visual task, and helpfully align elements to be compared
- During EDA, try several arrangements

Cognition

- Derived variables
- Ranking

Derived variables

William Playfair, one of the earliest line charts
What does the difference look like?

Derived variables

Differences shown directly, by Cleveland and McGill

Ranking: alphabetical

Ranking: informative

Derived variables and Ranking

Lessons

- If differences or ratios are interesting, compute and plot them directly
- Order your dots/bars meaningfully: ranked by a variable, not alphabetical

Consistency

- Across small multiples
- In design
- With semantic associations

Consistency

Which age group weighs the least?

Consistency

Give all small multiples the same structure, usually including axis limits, to make comparisons easier and reduce cognitive load

Age (months)

Consistency

Ensure design changes are meaningful (tied to data changes)

SUPREME COURT
 Three out of nine
 Ithonhind

CONGRESS 104 out of 535
\square

HOUSE OF REPRESENTATIVES
84 women out of 435 (19\%)

SENATE

Consistency

More consistent redesign, Stephen Few

Consistency

Avoid meaningless visual variables like shadow or 3D STRUCTURE OF SERVICES 2007

Consistency

Lessons

- Use consistent mappings (colors and shapes, axis limits) across graphs
- Don't reuse same mappings for a different data variable
- Avoid meaningless variety in design
- Avoid shadow, 3D, and other variables not mapped to data

Semantic associations

Orange vs blue crab species: I've seen this in a talk (crabs dataset in MASS package)

Semantic associations

Lessons

- Use meaningful mappings: orange vs blue crab species = orange and blue symbols
- Use conventional mappings: blue $=$ cold, red $=$ hot
- "More = more": deeper saturation or larger size $=$ higher value of variable
- Choosing color, point symbol, line type
- text, matplot, RColorBrewer
- mfrow, layout, mtext

For next time

- We'll cover the Grammar of Graphics framework, and how it is the basis for ggplot2 and Tableau
- HW 2 due Saturday at 5pm, through Blackboard

