04 Grammar of Graphics

36-721 Statistical Graphics and Visualization

Jerzy Wieczorek

9/10/15

Last time

- Visual perception: quantitative comparisons, grouping and search, cognition, consistency
- ▶ Plotting symbols/colors/line types and layouts in base R
- ► HW 2 is coming up
- ► HW 1 is graded

HW₂

To clarify:

- ► It's OK to just compare STEM vs non-STEM as the "fields"; larger dataset is **not** required, just there in case you're curious
- ▶ It's OK to use RMarkdown, knitr, Sweave, etc. instead of saving plots with pdf() and png() like in HW 1

HW₁

- ▶ A score of 1 means **Competent**: no need to revise/resubmit.
- ▶ Any lower score means **Not yet competent**: please revise following the TA's comments and resubmit.

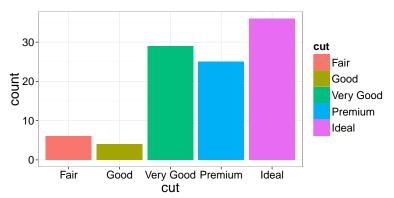
Today

- Grammar of Graphics concept
- Tableau
- ▶ ggplot2

Today

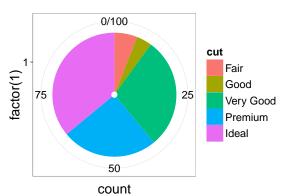
Follow along:

- Editable code in 04_GoG_code.R
- Code with output examples in 04_GoG_code.html


Grammar of Graphics

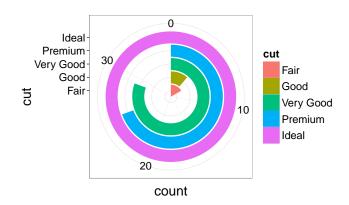
- Examples
- ▶ Why bother
- History
- Components

Let's demonstrate on a small subset of diamonds dataset that comes with ggplot2 (with black-and-white theme, and larger font)


"Bar chart": map discrete variable to x-axis and to color; compute counts-by-category, and map them to bar heights

```
ggplot(data = dsmall, aes(x = cut, fill = cut)) +
geom_bar(stat = "bin") + coord_cartesian()
```

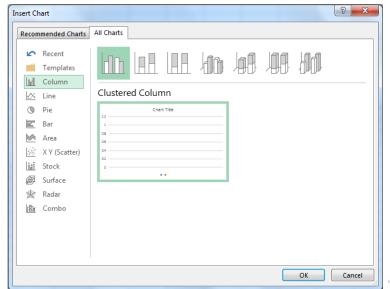

"Pie chart": set a constant radius of 1 on polar coordinates; map discrete variable to color; compute counts-by-category, and map them to angles


```
ggplot(data = dsmall, aes(x = factor(1), fill = cut)) +
geom_bar(stat = "bin") + coord_polar(theta = "y")
```


So... what if we map discrete variable to color and radius instead?

```
ggplot(data = dsmall, aes(x = cut, fill = cut)) +
geom_bar(stat = "bin") + coord_polar(theta = "y")
```


"Race track plot": terrible idea, considering last lecture :) but nifty example of GoG's flexibility.


"This system is capable of producing some hideous graphics . . . This system cannot produce a meaningless graphic, however."

-Leland Wilkinson, The Grammar of Graphics

We'll see nicer examples in R demo soon!

Grammar of Graphics: why bother

Expressing a graph from the ground up is more flexible than "chart zoo" approach (like Excel's chart wizard)

Grammar of Graphics: why bother

"The grammar is useful for you both as a user and as a potential developer of statistical graphics. As a user, it makes it easier for you to iteratively update a plot, changing a single feature at a time. The grammar is also useful because it suggests the high-level aspects of a plot that *can* be changed, giving you a framework to think about graphics, and hopefully shortening the distance from mind to paper. It also encourages the use of graphics customised to a particular problem, rather than relying on generic named graphics."

-Hadley Wickham, ggplot2

Grammar of Graphics: history and influence

- ▶ Leland Wilkinson, *The Grammar of Graphics*
- ► Hadley Wickham, ggplot2, popular R implementation
- yeroon.net/ggplot2, web GUI for ggplot2
- ► Tableau (Wilkinson now works there)
- SPSS Graphics Production Language (GPL) and Visualization Designer
- IBM VizJSON
- **>** . . .

Grammar of Graphics: components

Wilkinson's grammar:

- ▶ data
- trans: variable transformation (identity, bin, smooth, quantile...)
- scale: scale transformation (axis limits, log scale, color mapping...)
- coord: Cartesian, polar, map projection...
- element: graphic element (point, line, bar...) with attributes (color, symbol, length...)
- guide: axes, legends, titles...

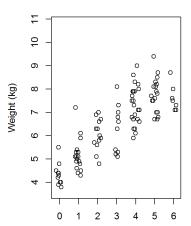
Grammar of Graphics: components

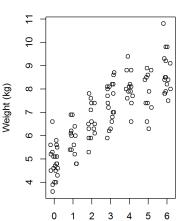
ggplot2 specifications:

- ▶ data
- aes: aesthetic attributes (position, length, color, symbol...)
- stat: statistical variable transformation (identity, bin, smooth, quantile...)
- ▶ geom: geometric element (point, line, bar...)
- scale: scale transformation (axis limits, log scale, color mapping...)
- coord: Cartesian, polar, map projection...
- facet: divide into subplots / small multiples using a discrete variable

Grammar of Graphics: components

More on ggplot2 specifications:


- ► Each layer has its own data, aes, stat, and geom ... then the scale and coord are coordinated across facets
- ► Finer control over stat summaries with group: see documentation, Oxboys example
- ► Of course control over guides (axes, legends, titles...) is also possible


Grammar of Graphics: practice

Example plot from last lecture:

What data map to which aes here? What stat, geom, scale, coord are used? Any facet?

Weight vs Age, by Gender Male

999

Grammar of Graphics: practice

WHO Child Growth Standards, charts of Length-for-age, percentiles, by gender

What data map to which aes here? What stat, geom, scale, coord are used?

Any facet, if we consider Boy and Girl plots side-by-side?

Grammar of Graphics: more resources

- ggplot2 official documentation
- ggplot2 cheat sheet
- StackOverflow help for ggplot2
- A nice ggplot2 tutorial
- Wickham's book ggplot2, especially Ch 3-4; free PDF on Springer Link through CMU
- ► Wilkinson's book *The Grammar of Graphics*, esp. last chapter "Coda"; free PDF on Springer Link through CMU

Tableau

Polished implementation of Wilkinson's "graphboard" idea Student license (1 year free)

ggplot2

Follow along in R code.

We won't cover qplot(), a ggplot2 wrapper function that acts more like base R, because I find it doesn't help explain the GoG concept.

For next time

- We'll learn basic concepts of (Graphic) Design, how to apply them to your visualizations, and how to implement them in Inkscape/Illustrator
- Install Inkscape if you want to follow along
- ► Readings: Cairo Ch 8
- ▶ I strongly recommend *The Non-Designer's Design Book* (newest edition is great, but old editions OK)
- HW 2 due Saturday at 5pm, through Blackboard