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Question from last time

Is normality required for (non-Bayesian) Fay-
Herriot model? No. This would be enough:

ll/i:)/i‘*'ei‘,}/;i:X?Jij)—f—u-i,

E(e;) = E(u) =0, V(e) =07 V(u;) = 0y
Without normality, we can estimate BLUP (best
linear unbiased predictor) and get moment-

based variance estimates. With normality, BLUP
is also BP, and we can use MLLE or REML.
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Outline

Bayesian statistics refresher
Intro to PROC MCMC and WinBUGS
Bayesian area-level (Fay-Herriot) model

Examples in SAS and in R + WinBUGS

Further resources

Bayes refresher

“All classical inference statements ... are
probability statements about x given 6, phrased
SO as to appear to be probability statements
about 6.”

—Anthony O’Hagan

Example: given ..., x,, random sample with
unknown mean j¢, we use x|p ~ N(u, 02/}'2)
to infer plausible values of 1
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Bayes refresher

* Bayesians talk directly about posterior
distribution of u|x. (At Census, we usually want
to report the mean, standard error, and CI
endpoints of jx.)

* This requires specifying a prior distribution
for 1. For many problems, can find a
noninformative prior that gives similar
inferences as classical/frequentist approach.

Bayes: exact vs. Monte Catlo

* (a) Is posterior p(f|x)a standard distribution
(Normal, Beta, etc.) we can get exactly? Then we
know mean, stderr, and CI endpoints exactly.

* (b) Is posterior NOT a standard distribution?
We draw a big sample from posterior, then
summarize this sample: mean of posterior
distribution is approx. the sample mean of the
draws, the CI is 5% & 95% quantiles, etc.
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Bayes: types of Monte Carlo

* (bl) Posterior is a non-standard distribution but
we can draw samples directly? Then we do so.

* (b2) Posterior 1s a non-standard distribution and
we can’t draw samples directly, but we can
evaluate the posterior distribution function? Use

Markov Chain Monte Carlo (MCMC) methods
to draw samples indirectly.

Bayes: MCMC overview (simpler!!!)

* You have an initial parameter value 6*). Propose

a new parameter value §(F1),

* Sometimes accept the proposed new value as the
next draw in your MCMC sample: glt+l) — glt+1)

...and sometimes reject: plt+1) — g(t)

* There’s lots of math behind what’s meant by

“propose” and “sometimes”, but SAS or
WinBUGS will take care of this for you.




Bayes: MCMC overview:
what is “sometimes’’?

* Pick an initial parameter value §*) and evaluate
the posterior p(f)
t+1) and evaluate posterior there too:p

. Propose a new parameter
value 6

If plt+h > plt) accept new parameters as a draw
(t+1) _ glt+1)

in your sample: ¢
If p(HU < p(f‘), make a randomized decision:
— with prob. 1 — (p(t_'_l)/p(”), ‘reject’: Ui+l — g(*)
— with prob.p(Hl)/pm, ‘accept™ gli+1) = glt+1)

(t+1)

Bayes: MCMC overview

End with a chain of values: g(1), glt+1) g(t+2)

Mathematically, can prove that this chain is a
sample from the posterior distribution

In practice, need to check “convergence’: does
the chain behave like a simple random sample
from the high-probability parts of the posterior?
Or 1s it stuck in a low-probability area, or
autocorrelated, etc.?
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Bayes: MCMC overview

Y[47) chains 1:3

Chains mixing well, each converged
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b0 chains 1:3

Slight autocorrelation within chains
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Checking MCMC “convergence”

Run multiple chains from different starts; see if
they mix well and if each looks like white noise

Use Gelman’s R criterion: convergence isn’t
good unless it’s close to 1.0 (t.e. below 1.1)

Check if MC error is small relative to post.stdev

If convergence is slow, try reparameterizing your
model — may be able to reduce correlation

among parameters
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Model checking

e Same as for non-Bayes models: check the raking
factors, compare to a “truth deck,” etc.

* Sensitivity check on priors: re-run with different
priors and see if your estimates change much

* Posterior predictive checks: if you draw new
data using the posterior distribution, does it
“look like” your original data?

- licnts

* Your data are not normal as given, but are
approximately normal on a transformed scale?
log(y;) ~ N(XI' 8,07+ 03)
No problem with Bayes! Just back-transform
your MCMC samples to original scale before
taking means, quantiles, etc.




PROC MCMC and WinBUGS

* Both tools let you just specify the form of the

model, and they work out the MCMC details
behind the scenes.

WinBUGS seems faster, more robust, easier to
tweak, and better at handling missing values.
Also, in SAS you have to worry about whether
each variable is in a dataset vs. in an array.

But SAS is more familiar for many of us...

PROC MCMC

PARMS statements initialize the parameters;
use a separate statement for each block of likely-
to-be-correlated parameters

PRIOR statements define priors on parameters

MODEL statement shows how your observed
data relates to the parameters
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R + WinBUGS

R is an open-source statistical software package.

WinBUGS is a standalone program for Bayesian
statistical modeling.

You can use WinBUGS on its own, but I prefer
to call WinBUGS from within R:

re-running a script 1s more reproducible than
remembering clicks on a screen.

On Linux, JAGS replaces WinBUGS.

Area-level (Fay-Herriot) model

Sampling model: y; ~ N(Y;,07)

Linking model: Y, ~ N(X ]-Tﬁ, Jﬁf)

We want posterior distribution of each Y;
Just add uninformative priors. Ideally:
p(B) o<1 and ploys) ox 1

In practice:

B ~ N(0,1000000) and o7 ~ Unif(0, 1000)
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Area-level (Fay-Herriot) model

Alternate parameterization:
yi ~ N(Yi,07), Yi = X[ B+ uj, ui ~ N(0,03)
Mathematically, this is the same model.

But practically, the choice of how you specity it
in code can affect the MCMC convergence.

See code examples and Gelman (20006) paper for
yet another way to reparameterize.

Further resources

Gentle, thorough Bayes intro: Kruschke (2011)
More detailed Bayes intro: Gelman et al. (2003)
Hierarchical Bayes chapter of Rao (2003)

PROC MCMC examples: Mukhopadhyay &
McDowell (2011), SAS 9.2 user’s guide

Priors for hierarchical variances: Gelman (20006)

Software: SAS 9.2, R, WinBUGS, JAGS
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