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1. Introduction

Many neuroscientists believe that the presence and severity of autism is related
to impaired connectivity in the social brain. We use a novel combination of study
design, brain imaging technology, and functional connectivity measures to exam-
ine differences in functional connectivity between subjects with Autism Spectrum
Disorder (ASD) and Typically Developing (TD) subjects.

This exploratory report evaluates whether our novel study design has sufficient
power to address the scientific questions of interest reliably. With the small available
sample size, the large number of parameters generated by the all-to-all functional
connectivity measure, and the use of noisy resting-state recordings rather than
task-based recordings, we have low study power and our results are not statistically
significant. We also attempt to avoid data fishing by only running a limited number
of tests and by using appropriate multiple-comparisons corrections.

Nonetheless, our point estimates are compatible with the scientific hypothesis
that functional connectivity is stronger in TD than ASD subjects, particularly in
the social brain. If similar estimates and patterns held in a larger study, it would
provide evidence in favor of this theory.

In Section 2, we explain the scientific terms and brain imaging technologies un-
derlying our study. Our scientific and statistical hypotheses are stated in Section 3.
Section 4 describes the data and the pre-processing we performed, while the sta-
tistical analyses of interest are presented in Section 5. Results are discussed in
Section 6.

The appendix (Section A) summarizes data-access challenges that led us to
change directions from our initial planned ADA topic.

2. Scientific background

Our study explores neurological aspects of Autism Spectrum Disorder (ASD),
sometimes simply referred to as as Autism (Section 2.1).
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We have reason to believe this disorder is related to impairments in an aspect of
brain activity known as functional connectivity (Section 2.2). Prior work suggests
that functional connectivity is lower among ASD than TD subjects, especially in
the spatial domain of the social brain (Section 2.3) and in the frequency domain of
the alpha band oscillations (Section 2.4).

In order to study functional connectivity in our subjects, we measure their
brain activity using magnetoencephalography (MEG) (Section 2.5). MEG is a
non-invasive brain imaging technology with fine temporal resolution. We also use
structural information about each subject’s brain from magnetic resonance imaging
(MRI) recordings (Section 2.6).

Of the many ways to define functional connectivity, we choose to use a metric
developed by Ghuman et al. (2011) that is based on the phase-locking values of
Lachaux et al. (1999) (Section 2.7).

2.1. Autism Spectrum Disorder. In revising its Diagnostic and Statistical Man-
ual of Mental Disorders from the 4th to the 5th edition (DSM-5), the American
Psychiatric Association grouped several disorders (including autistic disorder and
Asperger’s disorder) into a single diagnosis of Autism Spectrum Disorder (Amer-
ican Psychiatric Association, 2013a). “The essential features of autism spectrum
disorder are persistent impairment in reciprocal social communication and social
interaction [...] and restricted, repetitive patterns of behavior, interests, or activ-
ities [...] These symptoms are present from early childhood and limit or impair
everyday functioning,” and prevalence worldwide is estimated at around 1% of the
population (American Psychiatric Association, 2013b, pp. 53-55).

Despite its frequency and possible severity, the causes and mechanisms of ASD
are not yet well understood. Unlike some neurological disorders (such as Broca’s
aphasia, triggered by damage to Broca’s area in the brain), ASD does not have a
single, clear, localized root. Differences between ASD and TD subjects appear to
occur throughout the brain.

The subjects in our study either have been diagnosed with autism or a related
disorder, forming the ASD group, or have been diagnosed with no psychiatric dis-
order, forming the TD group.

2.2. Functional connectivity. “Structural connectivity” refers to physical, anatom-
ical links between brain regions. “Functional connectivity,” on the other hand,
refers to related patterns of activity between brain regions: which regions tend
to synchronize their activity, and under what conditions? Functionally-connected
regions need not be structurally-connected and vice versa.

Many different measures of functional connectivity are in use, with different
strengths and weaknesses depending on the researcher’s goals. Most are essentially
statistical measures of association between two time series, including correlation,
coherence, Granger causality, etc. Our study uses a measure based on the phase-
locking value of Lachaux et al. (1999), described in Section 2.7.

2.3. The social brain. The left side of Figure 7, from Gotts et al. (2012), high-
lights a set of brain regions including the temporo-parietal junction; the posterior
superior temporal sulcus; and the fusiform gyrus, among others. This collection of
brain areas is known to co-activate commonly across a range of social tasks and has
been termed the “social brain.” Prior studies have suggested that ASD appears
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to be associated with impairments in the social brain, such as weaker functional
connectivity (Gotts et al., 2012) or lower cortical thickness (Wallace et al., 2010).

2.4. Alpha band oscillations. When brain activity is recorded with a technology
such as MEG, which measures the average activity of many neurons at once, syn-
chronized spiking of groups of neurons can manifest as oscillations on the recorded
time series. These oscillations may occur at different frequencies, and several fre-
quency bands occur commonly enough to have been given names in the neuroscience
literature. Oscillations in the 8-12 Hz frequency band (Purdon et al., 2013) are
known as “alpha band” activity or “alpha waves.” Alpha waves have been shown
to be associated with eye opening and visual stimulation (Redlich et al., 1946) as
well as with attention, sleep, and consciousness, for instance during anaesthesia
(Purdon et al., 2013).

In previous exploratory data analyses, Dr. Ghuman has found that global differ-
ences between ASD and TD patients’ functional connectivity are particularly large
in the alpha band. For the present study, we compute functional connectivity using
a wavelet-based measure (Section 2.7) centered at a single alpha-band frequency,
11 Hz, where these estimated differences are greatest, as shown in Figure 1.

This figure and the choice of 11 Hz are based on the same dataset used in this
study. We acknowledge a possible danger of overestimating any effects in the data,
since we have chosen to use the frequency at which those effects are maximized.
However, as it turns out, the study lacks enough power to achieve statistical signif-
icance even after selecting for the largest effect size here. Furthermore, this effect
itself is not statistically significant. For each patient, we compute a global aver-
age interhemispheric functional connectivity score, averaged over all locations in
the brain. We perform a two-sided, two-sample, unequal variances t-test on these
global averages, testing whether the difference between the ASD and TD lines at
11 Hz is nonzero in Figure 1. The result (p = 0.08, 95% CI (-0.002, 0.028), df = 33)
is not statistically significant.

2.5. MEG. Magnetoencephalography (MEG) is a non-invasive neuroimaging tool
with fine temporal resolution. MEG is used to study brain activity primarily in the
cortex (the outer layer of neural tissue). Neurons deeper within the brain are not
necessarily aligned in a common orientation, and they are farther from the MEG
sensors, so their generated magnetic fields are too weak to measure.

To record the miniscule magnetic fields produced by currents in the cortex, MEG
uses a helment containing an array of powerful, sensitive, supercooled magnets in a
shielded room. MEG measurements are recorded in Teslas, a unit of magnetic flux
density, usually on the order of 10 femtoTeslas (fT). MEG readings can be taken on
the order of every millisecond, while some other common brain imaging techniques,
such as functional magnetic resonance imaging (fMRI), may take several seconds
per reading. A tool like MEG is necessary in order to study millisecond-scale
patterns in brain activity, on the same order of magnitude as the individual action
potentials that form the basis of electrical activity in the brain.

On the other hand, the brain contains billions of neurons while MEG has only
around 300 sensors, arranged in a helmet placed outside of the skull. The problem
of inferring activity inside the brain from these 300 sensors is a “big p, small n”
problem and an interesting statistical challenge (Section 4.2.3).
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Figure 1. Average interhemispheric phase-locking values of ASD
and TD patients over a range of frequencies from 1 to 50 Hz. Plot
courtesy of Dr. Ghuman.

There are additional concerns related to data cleaning and pre-processing for
removing the effects of magnetic fields outside the MEG room, as well as data
artifacts caused by heartbeats, eye blinks, etc. In this study, we have simply applied
standard data cleaning procedures (Section 4.2.1).

2.6. MRI. Magnetic resonance imaging (MRI) is an anatomical imaging technol-
ogy used in neuroscience and other areas of medicine. Using powerful magnetic
fields and radio waves, MRI can produce visual images (with fine spatial resolu-
tion) of 2D slices through a patient’s body. In our study, MRI images of each
subject’s skull and brain were taken in order to model these structures, so that the
sensor-space MEG recordings (localized in the MEG helmet) could be translated
back into source-space estimates (localized on the subject’s cortex).

2.7. PLV/wavelet-based functional connectivity. From Lachaux et al. (1999)
we have the concept of phase-locking value (PLV), a measure of the functional
connectivity at a given frequency between two locations in the brain. Our setting
differs from theirs in that they compute PLV over trials at each time point, whereas
we compute PLV over time. We model the sources of MEG-recorded brain activity
as magnetic dipoles in the brain, with a single resting-state time series of activity
at each dipole (location). For a given subject and a frequency of interest f , we can
compute the PLV over time between two dipoles d1 and d2 as follows:

At each dipole dj separately (for j = 1, 2), we take the (pre-processed and
cleaned) time series of MEG measurements there; convolve it with a complex Mor-
let wavelet centered at frequency f ; and normalize the amplitude, obtaining a time
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Figure 2. Illustration of the concept of phase-locking values
(PLV). The PLV is abs(~u), the magnitude of the mean complex
vector ~u. Plot adapted from Lachaux et al. (1999).

series of phase values φf (dj , t). Then the PLV is a transformation of phase differ-
ences, averaged over time:

PLVf (d1, d2) =
1

T

∣∣∣∣∣
T∑
t=1

exp (i[φf (d1, t)− φf (d2, t)])

∣∣∣∣∣ ∈ [0, 1]

where T is the number of time points recorded. Figure 2 illustrates the interpreta-
tion of this metric. At each time point t, we represent the phase difference (between
these two dipoles, at this time) as a complex unit vector. Next, we average these
unit vectors over time and find the length of this average vector. If the phase dif-
ferences are constant over time, then the unit vectors will all be identical, so their
average will be a unit vector too and the PLV will be 1. (As the name “phase-
locking value” suggests, this metric is highest when the dipoles stay at a constant
phase difference, i.e. the phases are “locked.”) On the other hand, if the phase
differences vary wildly over time, then the unit vectors will point in all directions,
their average over time will be a short vector near the origin, and the PLV will be
close to 0.

As a measure of functional connectivity, we interpret that two dipoles with a
high PLV are consistently firing in phase at that frequency. As Lachaux et al.
(1999) argue, wavelet-based methods like PLV can be applied to nonstationary
signals, which is not necessarily true of some other common functional connectivity
measures such as simple correlation or coherence. Futhermore, correlation can give
a misleading indication of weak connectivity between two dipoles which are in phase
but lagged, so again PLV is a more suitable measure. Another benefit of PLV is
that it separates the effects of phase from the effects of amplitude. Phase-locking
is sufficient for concluding that two dipoles are functionally connected, so there is
no need to conflate phase-locking and amplitude (as coherence does).

Ghuman et al. (2011) use adjusted PLVs to compute an all-to-all connectivity
matrix between every pair of dipoles. Their adjustment is to subtract off the PLV
computed on empty-room noise (i.e. a recording using the same MEG apparatus
with no participant inside and projected onto a standard brain). They find that
this successfully accounts for the spurious phase-locking that results from estimat-
ing each source dipole’s data using a common set of MEG sensors. Every source
estimate draws from every sensor, causing an artifact of false-positive phase-locking
(especially strong between a dipole and its closest neighbors). By subtracting the
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two all-to-all connectivity matrices (real-subject data minus empty-room data),
they arrive at a matrix of adjusted PLVs which avoids this spurious phase-locking.

However, this adjustment over-corrects for pairs of dipoles that are spatially
close. To step around this over-correction, our statistical analyses in Section 5
only look at interhemispheric PLVs (i.e. between two dipoles that are in separate
hemispheres of the brain). Also, the resulting adjusted PLVs are no longer strictly
in the range [0, 1]. We simply interpret any negative values as showing negligible
functional connectivity compared to the level of noise in the data.

In the present study, we use the method of Ghuman et al. (2011) to construct
an all-to-all functional connectivity matrix for all dipole pairs, for each subject,
at every integer frequency from 1 to 50 Hz. Since we model the brain using 5124
dipoles, each of these is a 5124 × 5124 symmetric matrix of (adjusted) PLVs for
each subject in the study. However, as described above, we end up reducing this
to a smaller matrix containing only the interhemispheric PLVs; and we only use
the 11 Hz matrix, in which the average difference between TD and ASD is most
pronounced.

3. From scientific to statistical questions

Our scientific hypothesis is that functional connectivity in social brain regions
is stronger among TD than ASD subjects. We translate this into two primary
statistical questions:

• Globally, do we have evidence that connectivity patterns are significantly
different for ASD vs. TD?
• Locally, where in the brain is connectivity significantly different for ASD

vs. TD?

Under our scientific hypothesis, we hope that the answers will be “Yes” and “In
the social brain,” respectively.

We frame this study as a hypothesis testing problem. Using the study design
and methods described here, do we have enough data to convincingly demonstrate
an association between connectivity patterns and ASD vs. TD status, and hence to
provide evidence about our scientific hypothesis?

Concretely, our present work differs from other studies addressing this scientific
question in that we use:

• resting-state recordings, not task-based;
• MEG, not another brain-imaging technology such as fMRI;
• activity in the alpha band, not at all frequencies;
• PLV-based functional connectivity, not another measure such as correlation

or coherence; and
• all-to-all connectivity, i.e. comparing each dipole to all others, not just

evaluating the connectivity between a small number of prespecified seed
regions.

The decision to use resting-state data introduces substantial noise, as opposed to
task-based data (where subjects perform a certain task repeatedly and the record-
ings can be averaged over these repeated trials to reduce noise). Additionally, the
choice of all-to-all connectivity leads to a large number of variables (big p, small
n) and many possible multiple comparisons, making inference more challenging. In
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Figure 3. Time series plot of several MEG channels from one patient.

light of these decisions, it is unsurprising that our analyses ultimately found no
statistically significant associations.

Section 4 details how we pre-process and summarize the data, in order to make
it more tractable to address these questions via the analyses described in Section 5.

4. The data

4.1. Data structure. The data consists of resting-state MEG recordings from 17
ASD and 18 TD subjects, recorded at UPMC’s Brain Mapping Center and partially
pre-processed by members of Dr. Ghuman’s lab. We also have structural MRI
data for each subject, as well as empty-room MEG recordings taken for calibration
shortly before or after each “real” recording.

For each subject, the data include 313 channels recorded over 10 minutes per
patient. The 600 Hz recordings were downsampled to 150 Hz, for a total of 90,000
time points per recording. The 313 channels include 306 MEG channels; four
stimulus channels (although there were no stimuli presented); two ocular channels;
and one cardiac channel. The latter three channels allow correcting for the effects
of eye movement and heartbeat.

In order to depict the data structure, Figure 3 depicts a section of one patient’s
MEG data. This figure shows a small section of the time series for a subset of the
MEG channels, along with the eye-blink EOG channels, the cardiac ECG channel,
and the reference stimulus STI channels. This figure illustrates how the cardiac
activity is reflected in several MEG channels as well, so we must account for its
effects as part of our data cleaning.

4.2. Pre-processing workflow. As detailed below, the data pre-processing had
the following goals: remove noise in the raw data; combine the MEG data with the
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Figure 4. Pre-processing workflow.

MRI-derived spatial structure of the patient’s brain; compute measures of functional
connectivity between different locations; and simplify the resulting data down to a
tractable level for statistical analysis.

Figure 4 summarizes the workflow, described in detail in Sections 4.2.1 through
4.2.5. In Figure 5, we overlay the data dimensions (per subject) at each step of the
workflow to help illustrate how each step transforms the size of the dataset.

In practice, the first pre-processing stages were performed by members of Dr.
Ghuman’s lab. For the dataset actually used in this study, the author only per-
formed the final stage, in Section 4.2.5, as well as all the statistical analyses in
Section 5. However, the author did practice performing the earlier pre-processing
stages on another dataset, as described in Appendix A.

4.2.1. MEG sensor space. The MEG data are in FIF file format, which can be read
and analyzed with the open-source software MNE-C and MNE-Python (Gramfort
et al., 2013).

We perform standard data cleaning steps to remove noise and artifacts. These
steps consist of band-pass filtering, temporal signal space separation (TSSS), and
signal-space projection (SSP).

Band-pass filtering for the range 1 to 50 Hz removes low-frequency drift and
high-frequency noise, including the 60 Hz noise from power lines.

TSSS uses the known structure of the MEG sensor array and the basic physics of
Maxwell’s equations in order to decompose the MEG signal into two fields: arising
inside vs. arising outside the helmet. By keeping only the signal from inside the
helmet, we remove artifacts due to empty-room noise.
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Figure 5. Pre-processing workflow, overlaid with dataset dimen-
sions (per subject) at each step.

SSP removes ocular and cardiac artifacts by performing principal components
analysis (PCA) on the EOG and ECG channels, computing a noise subspace which
is then removed from the MEG data.

4.2.2. MRI. The MRI pre-processing converts each subject’s 2D MRI images into
a triangulated 3D mesh of their brain and skull structure. The patients’ structural
MRIs are analyzed with another open-source software tool, FreeSurferTM, in a step
known as “cortical reconstruction.” By measuring and modeling the shape of the
patient’s brain and skull, we can transform data from the sensor to the source space.

There is also a “coregistration” step, in which this 3D cortical reconstruction is
aligned with the subject’s head location and position inside the MEG helmet.

All together, using the reconstructed shape and location (relative to the MEG
sensors) of the cortex and skull as anatomical constraints, we compute the gain
matrix X described below in Section 4.2.3.

4.2.3. Source localization. This step transforms each of the 90,000 time points from
the MEG sensor space of 306 sensors to the source space of 5124 dipoles.

The standard method for source localization is “minimum-norm estimation”
(MNE), which can be seen as a set of L2-norm regularized regressions or ridge
regressions, computed separately at each moment in time. If we knew the current
at a given point in the brain, we could use the MRI-derived skull shape and basic
physics to evaluate how that current would be measured by each MEG sensor after
passing through the skull. Instead, we have the inverse problem: estimating the
distribution of currents in the brain, using the observed currents measured by the
MEG sensors.
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We model sources in the brain as a large set of small magnetic dipoles, one dipole
per voxel (volume pixel), with the voxels arranged in a triangulated mesh over the
cortical surface. A separate time series of activity is estimated at each dipole. At
each moment, the current at a dipole has both an orientation and a magnitude. In
our model, each dipole’s orientation remains constant (perpendicular to the cortical
surface at that location), and only the magnitude changes over time.

We model the cortical surface as a commonly-used triangulation of 5124 vertices
(5120 triangles), in which the source locations are about 6 mm apart on aver-
age. This triangulation is achieved by subdividing an icosahedron repeatedly. The
chosen level of subdivision balances the need for a manageably-small number of
dipoles without overly-large dipole sizes. It would not be scientifically meaningful
to average together much larger clusters of neurons.

In other words, we partition the cortex into several thousand (oriented) dipoles
and estimate the current strength in each voxel at each time point. At a given time
point t, let βt denote a vector of these current strengths, and let yt be a vector of the
MEG sensor measurements. Using the structural MRI, we create a “gain matrix”
X deterministically to indicate how the currents at each dipole are transformed
before being measured at the MEG sensors. We assume that yt ≈ Xβt, plus or
minus noise in the measurements and variability in the currents themselves, which
we can account for via estimated noise covariance matrices Cy and Cβ , respectively.
Since βt is a much longer vector than yt (5124 dipoles vs. 306 sensors), βt is not
estimable using ordinary linear regression. Instead, we estimate βt via a regularized
regression that shrinks elements of βt towards 0, weighted appropriately by the
estimated noise covariance matrices:

β̂t = arg min
β

[
(yt −Xβ)TC−1

y (yt −Xβ) + βTC−1
β β

]
Alternative source localization methods might use L1-norm regularization (as

in “minimum-current estimation” or MCE), or may impose additional restrictions
on covariance matrix estimation, encourage smoothness in the estimates over time,
etc. However, we saw no reason not to use standard MNE in this study.

Finally, the source-localized estimates are projected once more, by morphing
them from the subject’s actual brain onto the corresponding anatomical regions of
a “standard” brain. Morphing all subjects’ data onto a common space allows us to
make inter-subject comparisons at any given location on the cortex.

We acknowledge that this process is imperfect. Due to natural variability in
the structure of human brains and the small dipole sizes used, a given dipole in
one subject will not be perfectly comparable with “the corresponding dipole” in
the standard brain. We try to compensate for this problem by using statistical
analyses in Section 5 that make broad comparisons over sets of dipoles, rather than
assigning importance to individual dipoles.

4.2.4. Functional connectivity. For each of the 5124 × 5124 pairs of dipoles, we
compute the PLV/wavelet-based functional connectivity centered at each integer
frequency between 1 and 50 Hz, as described in Section 2.7. In light of Figure 1,
we later retain only the 11 Hz data for statistical analysis.

Furthermore, we subset the data to one off-diagonal quadrant of this symmetric
connectivity matrix. This leaves us with connectivities for the 2562 × 2562 inter-
hemispheric dipole pairs. We remove the intrahemispheric dipole pairs because of
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the empty-room correction as described in Section 2.7. With no correction, nearby
dipoles will naturally have similar time series and high PLVs, simply due to the pro-
cess of estimating many dipoles using relatively few MEG sensors. The empty-room
adjustment attenuates the estimated PLV between nearby dipoles, which corrects
the autocorrelation at moderate and large distances, but overcorrects at small dis-
tances. Hence, by only looking at interhemispheric PLVs, we only compare distant
pairs of dipoles and avoid being misled by this overcorrection.

4.2.5. Averaging. In the interest of simplicity, we reduce each subject’s data fur-
ther by averaging each row and each column of their subset (interhemispheric)
connectivity matrix. This gives us a single connectivity score for each dipole. This
score represents that dipole’s average connectivity with all dipoles in the other
hemisphere.

A low average score (near 0) suggests that this dipole does not show strong
functional connectivity with the other hemisphere. A high average score (near 1)
would indicate that this dipole does shows strong connectivity with the other hemi-
sphere. A moderate score likely indicates one of two possibilities: either moderate
connectivity with many other dipoles, or very strong connectivity with only a few
dipoles.

5. Statistical analysis

At the end of this pre-processing, we have a dataset ready for statistical analysis.
For each subject, we have a vector of 5124 average interhemispheric adjusted-PLV
functional connectivity scores (one score per dipole); and we have a label for each
subject (TD or ASD).

From here, we could take two possible approaches: prediction/classification or
hypothesis testing. In the first approach, we could use the PLV scores as covariates
for predicting TD vs. ASD status, e.g. using logistic regression or other classifica-
tion algorithms. However, under this approach, we would still want to make sta-
tistical inferences regarding our scientific question of where in the brain functional
connectivity differs between TD and ASD subjects. This would be challenging:
usual significance testing of regression coefficients is difficult under the penalized
regression or classification methods needed for this “big p, small n” scenario, and
cross-validation would be too noisy with such a small number of participants.

Hence, we follow the second approach: we simply evaluate whether the study has
enough power to distinguish the TD and ASD groups, either at individual dipoles
or under global summary statistics. Section 5.1 summarizes our point estimates,
while the following sections summarize our statistical inferences.

In Section 5.2, we explore the use of multiple-comparisons-corrected tests on
individual dipoles. Furthermore, for any statistic we compute to compare the two
groups, we can also randomly permute the subjects’ labels (TD or ASD) and recom-
pute the statistic repeatedly to simulate a permutation distribution. We conduct
several such permutation tests: first in Section 5.3 using only the values of the PLV
scores, and then in Section 5.4 also accounting for the spatial arrangement of the
dipoles.

5.1. Exploratory data analysis. We compute a vector of two-sample, unequal-
variances t-statistics for the difference in PLVs between groups (TD minus ASD).
The t-scores are computed separately for each dipole.
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Figure 6. Histogram of t-scores (from each dipole) for the dif-
ference TD minus ASD, computed on averaged interhemispheric
adjusted-PLV values. t(df=33) density overlaid for reference.

Figure 6 shows the histogram of these t-scores. Nearly all t-scores are positive,
so our point estimates do not tend to contradict the scientific hypothesis that
connectivity is higher in TD subjects.

We can also show these t-scores arranged spatially by each dipole’s location on
the cortex. The right side of Figure 7 shows the spatial hotspots in our estimated t-
statistics. The plot only shows dipoles with absolute t-scores above 2, plotted with
20 steps of spatial smoothing. All plotted dipoles are red or yellow, indicating that
the TD score was greater than the ASD score for all such dipoles. (If any dipoles
had had much higher t-scores for ASD than TD, they would have been blue, but
no such effects occurred in the data.)

The left side of the figure (copied from Gotts et al., 2012) shows the social brain
regions. The left figure shows a folded brain while the right side (our data) is
plotted on an inflated brain. Although this may make comparison difficult for a
nonexpert, the apparent hotspots in our data on the right do indeed match up
with social brain areas on the left, particularly in the parietal and temporal cortex,
posterior superior temporal sulcus, and fusiform gyrus.

5.2. Separate tests with multiple comparisons corrections. We have a sta-
tistical summary of the dataset: a vector of 5124 t-statistics for the difference (TD
minus ASD) in average interhemispheric connectivity scores. If our scientific hy-
pothesis holds and our study has sufficient power, at least some of these connectivity
scores should be significantly different from zero.

The histogram of these t-scores in Figure 6 clearly has a positive sample mean,
and many individual scores are above the usual t-score cutoff of approximately 2.
However, we are implicitly carrying out 5124 distinct t-tests, so we need to correct
for multiple comparisons.

A popular and useful multiple-comparisons approach is to set a target False Dis-
covery Rate (FDR). However, the standard FDR approach assumes independence
between the tests, which is not appropriate here. We know these t-statistics are
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Figure 7. Left figure: social brain (copied from Figure 1 of Gotts
et al., 2012). Right figure: spatial locations of dipoles with highest
t-score estimates in our data.

not independent: neighboring dipoles are likely to have similar values of average
interhemispheric connectivity, and hence to have positively correlated t-statistics.

Instead, we can perform a Bonferroni correction, which does not assume in-
dependence. For a usual family-wide error rate (FWER) of αFWER = 0.05, we
compare each dipole’s t-score to a Bonferroni-corrected critical value at αBonf =
0.05/5124 ≈ 9.8× 10−6. However, the Bonferroni correction is known to be conser-
vative, and it turns out to be underpowered here. For a two-sided test with degrees
of freedom n1 + n2 − 2 = 33, the critical value is t33, αBonf/2 ≈ 5.22. None of our
dipoles have absolute t-scores beyond this critical value (our largest was 4.46), so
no dipoles are significant under this testing approach.

We see that, although many individual dipoles are unusual under the null t-
distribution, none are sufficiently large to remain significant after multiple com-
parisons. Still, the histogram of all 5124 t-scores clearly does not match the null
t-distribution. Consequently, we next seek significance through permutation tests
on the set of 5124 t-statistics.

5.3. Non-spatial permutation tests. Our first permutation test is an informal
visual judgment of whether the histogram of all 5124 t-scores, taken as a whole,
appears unusual compared to histograms from the null permutation distribution.

The concept is a “visual hypothesis test,” inspired by the nullabor R package
(Wickham et al., 2011). We plot a “lineup” of several null histograms of t-scores
from the permutation distribution. The real histogram of t-scores is also plotted,
but in a random location among the null plots in this lineup. The use of 19 null plots
and one real plot is roughly akin to testing with a significance level of α = 0.05.

If the real histogram clearly stands out from the others, it would suggest that
the null permutation distribution is not adequate for the real data and that there
may be a real difference between the groups. However, if the real dataset does not
dramatically differ from the null plots, then the null permutation distribution does
appear to describe the real data adequately. Any difference between the groups is
negligible compared to the noise in the data.

Figure 8 shows such a lineup of one real and 19 null histograms. We have
overlaid N(0,1) distributions, simply to help guide the eye in comparing locations
and scales of the histograms. Clearly none of these histograms actually match a
N(0,1), presumably due to autocorrelation among neighboring dipoles.
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Figure 8. Visual hypothesis test in the spirit of Wickham et al.
(2011). One histogram (identified in the text) plots the real data,
while the others are drawn from the null permutation distribution.
All histograms have N(0,1) density overlaid for reference.

We find that this informal visual test is inconclusive. The real dataset’s his-
togram is probably the “most unusual,” in that it is most dissimilar to the reference
N(0,1) curve, but its difference from the null histograms is not dramatic. (The real
data are in the right-most column, second row down.)

For a more objective evaluation, we run permutation tests for several summary
statistics computed on the real and null histograms. Without certainty about what
statistic would give the most powerful test, we try several plausible statistics:

• How many t-scores are “large”?
(proportion of absolute t-values that are above 2)
• How “massive” is the set of the largest t-values?

(sum of top 10% of absolute t-values)
• How “different” is the histogram from a reference distribution?

(Kolmogorov-Smirnov test statistic (maximum absolute difference in CDFs)
between the t-scores’ empirical CDF and a N(0,1) CDF)

The K-S test-statistic-based permutation test gave a p-value of 0.055, while the
other two tests’ p-values were above 0.1. Although we could continue trying other
summary statistics, this would run the risk of fishing for significance. Consequently,
we cannot conclude that this set of dipoles is significantly unusual under the per-
mutation distribution. We lack sufficient power to distinguish TD and ASD by the
set of average interhemispheric PLVs alone.

5.4. Spatial clustering permutation tests. However, the histogram permuta-
tion tests above neglect to use one important piece of information:which dipoles are
spatial neighbors. We can use this information in a spatial clustering permutation
test, in the spirit of Maris & Oostenveld (2007) and Xu et al. (2011).
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Figure 9. From left to right: The values of x, y, and z coordi-
nates in our matrix of dipole locations, plotted on the left brain
hemisphere. The color gradient in each subfigure runs from light
blue through dark blue to red to yellow. The y (back to front) and
z (low to high) coordinates are ordered correctly, but the x (left to
right) coordinates are scrambled.

A spatial clustering test draws from the same permutation distribution as before,
but then also accounts for spatial adjacency between dipoles. A common type of
test statistic finds all the spatial clusters (spatially-contiguous sets of dipoles whose
t-values are “large enough”) and computes the size or mass of the largest such
cluster. If the largest spatial cluster in the real data is larger than most such
clusters in permutation data, we can reject the permutation null distribution as an
implausible description of our real data and conclude that we have evidence of a
real difference between groups.

For our test statistic, we chose to consider only dipoles whose absolute t-scores
are above 2. For these dipoles, we find every connected spatial cluster, count the
number of dipoles in that cluster, and record the size of the largest cluster.

Although we have written functioning MATLAB code for conducting the spatial
clustering test, unfortunately, we could not obtain an accurate adjacency matrix
(indicating which dipoles are each other’s neighbors) from the MNE software or
find its representation in the stored data. We attempted to compute adjacencies
directly from a matrix of (x, y, z) coordinates provided by Dr. Ghuman’s lab, but
we discovered that the x-coordinates are scrambled, as shown in Figure 9. When
we plot the y or z coordinate values (middle and right subplots) as colors on the
brain surface, they form a smooth gradient in the correct direction. However, the
x coordinates (left subplot) are scrambled relative to the order in which they are
plotted. With no dipole ID to use for matching, we cannot align the coordinates
with the data in order to create an adjacency matrix for spatial clustering.

6. Discussion

As we see in the statistical analyses of Section 5, the t-scores for functional
connectivity differences between ASD and TD are not statistically different from
noise. Neither multiple-comparisons-corrected tests on each dipole, nor global tests
on the vector of t-scores, nor a global test on the spatial clustering of t-scores can
distinguish our results from chance. Therefore, we must answer our first question
of Section 3 in the negative: our study lacks power to conclude that functional
connectivity levels are significantly different in ASD and TD.
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As a consequence, it is also unsafe to use the spatial map of estimated t-scores to
infer where t-scores might be significantly different if only we had a larger sample
size. Hence we are unable to answer our second question of Section 3: we cannot
locate where functional connectivity is significantly different for ASD vs. TD.

We could certainly have explored more modern methods for estimating an em-
pirical null distribution (Efron, 2010, Chapter 6) or tried using other test statistic
variants for our spatial and non-spatial clustering permutation tests. However, we
fear that any more testing at this point would just be significance fishing.

Rather than seek out more powerful tests, it may be more productive to consider
what sample size we would have needed to attain significance. Roughly speaking,
we can imagine a dataset with more subjects but the same within-group sample
means and sample variances of average PLVs at each dipole. For every dipole j,
we would have the same values of x̄j(TD), x̄j(ASD), s

2
j(TD), s

2
j(ASD), but computed

from a larger n. In this case, as n increases, the standard error estimate decreases
and each dipole’s t-score

tj =
(
x̄j(TD) − x̄j(ASD)

)
/
√
s2j(TD)/n+ s2j(ASD)/n

becomes more extreme. The t-distribution’s degrees of freedom also rise and the
critical value becomes smaller. We calculate that at n = 23 subjects per group, or
46 total subjects, the largest absolute t-score in our dataset would reach 5.09 and
surpass the new Bonferroni-adjusted critical value of t44, 0.05/(2·5124) ≈ 5.00.

This is actually quite heartening: a moderate increase of 5 or 6 subjects per group
may be enough to achieve multiple-comparisons-corrected statistical significance, at
least at some dipoles. Power for permutation tests is harder to study, but the K-S
permutation test of Section 5.3 already had a p-value near 0.05 and may also have
attained significance with a slightly larger sample.

We could likely achieve more decisive results with an even larger, but still man-
ageable, increase in sample size. In a comparison of frequentist and Bayesian hy-
pothesis testing, Johnson (2013) illustrates how doubling the sample size can be
more than enough to power a simple study for significance threshold α = 0.005
instead of the traditional α = 0.05. The lower frequentist threshold corresponds to
substantially more-convincing evidence on standard Bayes-factor scales.

If the apparent patterns from our small sample did indeed hold in a large sample,
then we would have evidence in favor of both our hypotheses. Our t-score estimates
are mostly large and positive, so we would conclude that TD has higher average
connectivity than ASD. Also, the apparent spatial clusters of highest t-scores are
largely in social-brain areas, as the scientific hypothesis predicts.

Alternatively, instead of increasing the sample size, we can consider changing the
study design and methodology. Although we did not have sufficient power when
using all-to-all connectivity, we may have more success by averaging over larger
areas. By grouping dipoles a priori in larger brain regions (known anatomical and
functional structures of the brain) and computing a single average t-score in each
region, we would have fewer comparisons for which to correct. We would also reduce
the noise that comes from morphing each subject’s dipoles to a common brain at
such a fine spatial scale. Alternatively, by grouping dipoles a priori into two groups
(social-brain regions vs. all other brain regions) and testing just these two groups of
dipoles, we would likely be able to draw statistically significant conclusions with the
existing sample size. Finally, using trial-based recordings instead of resting-state
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data would allow us to average over repeated trials and reduce the noise in our time
series. On the other hand, this would also limit the generalizability of the study, in
that we could only draw conclusions about TD and ASD differences on such trials,
not on general resting-state activity.

In conclusion: Although our tests failed to reach statistical significance, it does
appear that all-to-all functional connectivity in resting-state MEG data is a promis-
ing approach. It should not require too many more subjects before the sample size
is sufficiently large to draw at least some limited conclusions. Alternatively, our
neuroscientific questions could be addressed productively through less ambitious
methods, by reducing either the noise levels or the number of comparisons.
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Appendix A. ADA project chronology and changes in scope

In January 2014, the original plan for this ADA project was to study epilepsy, not
autism. Patients whose epilepsy does not respond to medication are candidates for
surgery to remove the seizure focus. However, some proportion of surgical patients
will have undesirable post-surgery side effects and/or will experience no reduction
in seizures. There is currently no conclusive way to predict which patients will or
will not benefit from surgery. We intended to evaluate the use of several resting-
state MEG-based measures of functional connectivity to predict surgical outcomes,
using records from 20-30 temporal lobe epilepsy (TLE) patients at UPMC.

However, we were unable to obtain the complete data required for the intented
epilepsy project. Each major component of the data (MEG, MRI, and neuropsycho-
logical testing records) was managed by a different data owner and was de-identified
for privacy protection. We were unable to get all of each subject’s components as
well as the unique subject IDs needed to link each subject’s records correctly.

We spent the first portion of the year working with a small (n = 12 subjects)
MEG and MRI dataset, without the patients’ neuropsychological records or sur-
gical outcomes. During this time we learned to perform data pre-processing and
work with MEG data using Freesurfer and MNE-Python; became comfortable with
Python programming; and studied the science behind epilepsy and MEG.

In May and June we received more MEG records as well as a neuropsychological
outcomes dataset (pre- and post-surgery testing of each patient’s memory, verbal
skills, etc. to allow us to evaluate the surgery’s side effects), but without the IDs
needed for linking them together. In the following months we performed marginal
exploratory data analyses on these outcomes; implemented the correlation-based
functional connectivity measure of Antony et al. (2013); and practiced working
with the wavelet-based measure of Ghuman et al. (2011). Over the summer we also
observed an MEG experiment and met with a clinician to learn how MEG imaging is
read and used in practice. Nonetheless, we could not continue the analysis without
knowing which MEG records linked to which outcomes.

By October, with no further progress towards linking the records from different
data owners, we agreed to switch projects. The new autism project was chosen
largely for convenience due to the late date in the ADA cycle. Like the original
epilepsy project, it still involved the analysis of functional connectivity measures
from resting-state MEG data, which meant that most of our learning and work
throughout the year was still relevant. However, the autism dataset had already
been combined and pre-processed. This saved considerable time and effort and
made it possible to complete a reasonable analysis by the December deadline. On
the other hand (without having the raw, unprocessed version of the data), we were
limited in the kind of analyses we could do. Without being able to split the MEG
timeseries into exploration and validation datasets, and with such a small sample
size, we had to be especially careful to rein in our exploratory analyses to avoid
data fishing. This led to the restrained scope of our final analysis.
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