
describe travel reliability across days, weeks, months, and years.
With the availability of this rich source of archived data, new ana-
lytical tools can be developed for use with historical data and in a
real-time environment informed by past performance. The objective
of this paper is to describe the techniques used for rigorous validation
and refinement of an automated system to identify freeway bottle-
necks within the PORTAL environment. Using ground truth knowl-
edge of when and where bottlenecks occurred during a substantial
sample period, previous work (2) developed and tested a working
prototype with the intent to accurately identify, track, and display
active bottleneck features using graphical tools. This paper presents
an extended analysis of that prototype, and contains new results and
applications:

• Performance analysis of the automated bottleneck detection
tool, based on more extensive ground truth, confirms earlier results
with greater certainty.

• The use of lane-by-lane analysis, instead of pooling multiple
lanes, is evaluated with negative results.

• Fundamental diagrams are discussed as a means for developing
improvements to the tool.

• The automated bottleneck detection technique is applied toward
detecting shockwave speeds and visualizing historical patterns in
the archive data.

BACKGROUND

Past research has sought greater understanding of where freeway
bottlenecks formed and how and when they were activated. One
method uses oblique curves of cumulative vehicle arrival number
versus time and cumulative occupancy (or speed) versus time con-
structed from data measured at neighboring freeway loop detectors
(3–7). Using this method, it is possible to observe transitions between
freely flowing and queued conditions and to identify important
features over time and space. This method, which requires visual
inspection, has been applied here as ground truth to systematically
define bottleneck activations and deactivations.

Previous research has also developed techniques for automated
bottleneck activation and deactivation identification by comparing
measured traffic parameters and applying thresholds for those
values. Notably, Chen et al. (8) developed an algorithm to identify
bottleneck locations and their activation and deactivation times
using freeway loop detector data from San Diego, California, focus-
ing on speed differences between consecutive detectors. Zhang and
Levinson (9) implemented a similar system to identify bottlenecks
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Bottlenecks are key features of freeway systems. Their effects in perfor-
mance and emissions are of increasing importance as congestion wors-
ens in urban areas. In the United States, FHWA has been working to
identify and monitor key bottlenecks in each state. In Oregon, a freeway
data archive known as the Portland Oregon Regional Transportation
Archive Listing archives measured count, density, and speed data from
more than 600 locations at 20-s intervals. This archive has enabled
development of online freeway performance and reliability analysis
tools. This paper describes the rigorous evaluation and refinement of an
automated tool for identifying recurrent freeway bottlenecks using
historical data within the framework of the data archive. Efforts have
focused on identification and display of active bottleneck features by
using graphical tools and the selection of optimal variables that enabled
careful identification of active bottlenecks. This research aims to detect
bottleneck activation historically and, through future work, in real time
as well. Ultimately, the results of this research will enhance the prioriti-
zation of improvements and implementation of operational strategies on
the freeway network.

Understanding traffic dynamics at freeway bottlenecks is a foundation
for understanding how the freeway system operates. A bottleneck is
defined as a point upstream of which one finds a queue and downstream
of which one finds freely flowing traffic. Bottlenecks can be static
(e.g., a tunnel entrance) or dynamic (e.g., an incident or a slow-
moving vehicle). Bottlenecks are said to be active when they impose
a restriction on the flow. They can be activated or deactivated due to
a decrease in demand or spillover from a downstream bottleneck (1).

Great costs imposed by congestion on the movement of people
and freight motivate the development of new freeway performance
measures and reporting systems. To improve transportation planning,
management, and operation, the Portland Oregon Regional Trans-
portation Archive Listing (PORTAL) has been established to collect
count, occupancy, and speed data from more than 600 locations
at 20-s intervals. Performance measurement tools are available for
generating reports on travel time, delay, vehicle miles traveled,
and vehicle hours traveled. Also available are statistical tools that

J. Wieczorek, Department of Mathematics and Statistics; R. J. Fernández-
Moctezuma, Department of Computer Science; and R. L. Bertini, Department of
Civil and Environmental Engineering, Portland State University, P.O. Box 751,
Portland, OR 97207-0751. Corresponding author: J. Wieczorek, jerzy@pdx.edu.

Transportation Research Record: Journal of the Transportation Research Board,
No. 2160, Transportation Research Board of the National Academies, Washington,
D.C., 2010, pp. 87–95.
DOI: 10.3141/2160-10



using occupancy differentials. Banks (10) used 30-s speed drop
thresholds to identify bottleneck activation in San Diego, and Hall
and Agyemang-Duah (11) developed a threshold using the ratio of
30-s occupancy divided by flow on a Canadian freeway. Bertini (12)
tested other signals including the variance of 30-s count as character-
izing bottleneck activation at several sites. Building on past research,
the objective of this paper is to evaluate the Chen et al. method,
using a sensitivity analysis approach, with data from a freeway in
Portland, Oregon. The performance of the automated method is judged
by comparing its output to the ground truth found by the oblique-curve
method (3–7 ).

The research mentioned above assumes a two-phase traffic theory,
where traffic states are either free flow or congested. Several other
approaches to identifying bottlenecks and congestion are based on
Kerner’s three-phase traffic theory, notably the ASDA–FOTO model
(13), which separates traffic into free flow, synchronized flow, and
wide-moving jams. Our proposed automated detection tool and our
ground truth approximation method are both based on two-phase
traffic theory. Although the different assumptions between two- and
three-phase traffic models mean that these approaches are not directly
compatible, approaches in Palmer et al. (14) have been compared
and contrasted.

EXTENDING PORTAL’S FUNCTIONALITY

In addition to providing loop detector data at different aggregation
levels, the PORTAL archive includes automatic data analysis tools
such as oblique plots, travel time analysis, congestion reports, and
information layers in time–space surface plots with incident and
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variable message sign information (15). In response to an FHWA ini-
tiative of identifying bottleneck locations, a new PORTAL module
is being developed to provide bottleneck identification and analysis
capabilities. One of PORTAL’s main features is the use of surface plots
to represent the time–space evolution of a particular measurement.
One goal for the bottleneck identification module is to visually
represent the bottleneck activation and deactivation times, as shown
hypothetically in Figure 1. Bottleneck activations are marked and
the average propagation speed of the shockwave is indicated as well.
This tool will provide the most relevant information to the user:
activation time, duration, deactivation time, location, and shock
propagation speed.

A further objective of this research is to incorporate historical
data into live data displays. Figure 1 also illustrates how previously
known bottleneck locations can be displayed on the time–space
diagram in a real-time environment. While bottlenecks A, B, and C
were detected from the current day’s data and mapped on the plot,
the bounding boxes illustrate durations and locations that occurred
90% of the time over a previous period of time. These boundaries
can be learned by analyzing previously archived data. Bottleneck
detection thresholds may lead to false positives or false negatives.
In this case, displaying the additional layer of historical bottleneck
locations supplements the current analysis output with historical
knowledge. Such historical knowledge of when and where to expect
bottlenecks may also improve forecasting of propagation speeds as
new data arrives, although the current paper’s method has not yet
been applied to forecasting. Bottleneck information could also be
displayed in combination with incident information, providing a
rich tool for users who want to distinguish recurrent congestion from
incident-related congestion.

FIGURE 1 Mock-up of desired output of incoming data analysis in combination with historically 
learned parameters, such as expected bottleneck locations and activations. [Source: Oregon Department
of Transportation.]



ANALYTICAL FRAMEWORK

Traffic theory describes six types of shock waves, as shown in
Figure 2 (16), and bottlenecks can form and evolve in many ways.
Many Portland freeway corridors contain recurrent bottlenecks that
form with front-stationary shockwaves coupled with backward-
forming queues. Therefore, this analysis begins with identifying
front-stationary bottleneck locations and activation and deactivation
times, followed by tracking backward-forming queue propagation
and mapping the congested conditions in time and space.

To identify a bottleneck, Chen et al.’s automated algorithm (8),
described in further detail below, focuses on consecutive detector pairs
along a freeway corridor and searches for bottlenecks (i.e., places with
queuing upstream and free-flow downstream). This automated method
uses speed data from loop detectors and involves three parameters:
the data aggregation time interval and two speed thresholds. Chen
et al. arbitrarily selected parameter values that appear to work well
on San Diego freeway speed data. However, the optimal values of
these parameters may be different in other cities with different free-
way network configurations, geometry, weather, pavement, traffic
conditions, and the nature of the available data. For example, the
Portland freeway network contains several locations where one
freeway “tees” into another, resulting in recurrent congestion. In this
paper, the speed thresholds and data aggregation levels comprising
the Chen method were tested for bottleneck identification in Portland
using PORTAL data. Ground truth locations and activation or
deactivation times for 91 bottlenecks over 24 days, identified using
the method described in Cassidy and Bertini (4, 5), were used as
baseline reference points for evaluating the outcomes of the Chen
method using a range of parameters. Thus, the current paper’s
contributions include a rigorous evaluation of Chen’s approach,
parameter selection guidelines for other cities (as well as specific
parameter values optimized for Portland), assessment of potential
refinements to the automated algorithm (lane-by-lane analysis
and/or incorporating additional inputs such as flow or occupancy),
and description of the algorithm’s applications (shockwave speed
measurement and historical bottleneck visualization).
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SITE DESCRIPTION AND DATA PREPARATION

The implementation of the Chen method was tested with archived
data from the northbound Interstate 5 (I-5) corridor in the Portland,
Oregon, metropolitan region, shown in Figure 3. There are 22 detector
stations along this 22-mi (35-km) corridor. However, two of them
(mileposts 293.74 and 296.6) consistently suffer from poor data
quality, so they were ignored for the purposes of this research. The
remaining 20 detectors have an average spacing of approximately
1.15 mi (1.85 km). Detectors are located just upstream of metered
freeway on-ramps.

In previous work on this corridor (2), only 5 days of ground truth
testing were chosen for an initial algorithm evaluation and parameter
optimization. Furthermore, only algorithm performance at detecting
the front-stationary bottleneck itself was evaluated, rather than the
entire queue propagating upstream of the bottleneck.

With an updated algorithm capable of tracking the boundaries
of the upstream queue as well, the current analysis encompasses a
larger sample of ground truth days, leading to greater confidence in
the results. To evaluate the method against ground truth on Portland
data, a sample was chosen of 24 representative, high-data-quality,
midweek nonholiday days between February and December 2008.

Data were extracted from PORTAL at the lowest available resolu-
tion of 20 s between 5:00 a.m. and 10:00 p.m. for each day, including
count, occupancy, and time mean speed in each lane. Roll-forward
imputation was used to impute missing data and abnormally low
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speeds. This facilitated aggregation into the 1-, 3-, 5- and 15-min
data sets. For each station, a volume weighted mean speed for 1-min
aggregation was compared with arithmetic averaging; the results
showed that over 95% of the differences between the two averages
were smaller than 5 mph (8 km/h) and thus of no practical significance.
Thus, for each station, measurements from multiple lanes were
aggregated into a single quantity using simple arithmetic averaging,
and mean speeds by station were calculated at further levels of aggre-
gation (1, 3, 5, and 15 min) also by using arithmetic averages. The
obtained value was extrapolated across a region of influence of a
sensor station (i.e., the segment of the corridor between the current
sensor station location and the next downstream sensor location).

EXPERIMENTAL DESIGN

Baseline Bottleneck Analysis

To establish a baseline to act as ground truth for this experiment,
the activation and deactivation times of each candidate bottleneck
were carefully diagnosed and verified using oblique curves of cumu-
lative vehicle arrival number versus time and cumulative occupancy
(or speed) versus time constructed from data measured at neighboring
freeway loop detectors. This manual procedure was used to carefully
confirm queue formation and propagation, such that active bottlenecks
separated freely flowing traffic from queued traffic. Previous research
describes the procedures in detail, particularly those described in
Horowitz and Bertini (7 ) for the detector configuration in Portland
(only upstream of on-ramps) and other sources (3–6, 12), as well as
for the current project in Bertini et al. (17 ). With this visual tool, the
prevailing flows and speeds measured at the particular station are
seen as slopes of the oblique cumulative plot. This method filters out
noise without altering the times at which flow and speed changes
occurred.

The above procedure was performed for all 91 candidate bottle-
neck activations and the associated bottleneck-related congestion.
This heuristic method provides a solid baseline for the ground truth,
but requires visual inspection by the user, hence the search for an
automated algorithm close to this method in accuracy. The perfor-
mance of our automated bottleneck detection system (described below)
was judged by how well its results corresponded to the visual
method’s ground truth.

Automated Detection Algorithm

To test the Chen et al. (8) method on the Portland data set from
PORTAL, the method for identifying the locations of bottlenecks
was implemented in the MATLAB programming environment. The
Chen method compares each pair of longitudinally adjacent detectors
at each 5-min time point and declares that there is an active bottleneck
between them when

• Speed at the upstream detector is below the maximum upstream
speed threshold and

• Difference in the speeds at the upstream and downstream
detectors is above the minimum speed differential threshold.

Given that a bottleneck separates free-flow (downstream) from con-
gested (upstream) traffic states, Chen et al. chose reasonable values
of MaxUpstreamSpeed = 40 mph (64 km/h), MinSpeedDifferential =
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20 mph (32 km/h), with data aggregated at 5-min intervals. Thus,
if the upstream speed is less than 40 mph and the downstream
speed is more than 20 mph greater than the upstream speed, the
Chen method identifies a bottleneck between those detectors during
that interval.

However, Chen et al. recognized that each of the three parameters
(maximum upstream speed, minimum speed differential, and aggrega-
tion level) may need to be adjusted for the algorithm to work optimally
in new situations. An analysis for the extended algorithm has been
conducted that tracks not only bottlenecks but also the resultant con-
gestion found directly upstream of bottlenecks. Five values each of
MaxUpstreamSpeed, MinSpeedDifferential, and aggregation level
were tested, in a total of 125 distinct combinations. Analyzing each of
the 24 sample days, MaxUpstreamSpeed was allowed to range from
30 mph (48 km/h) to 50 mph (80 km/h) in 5 mph (8 km/h) increments;
MinSpeedDifferential was varied from 10 mph (16 km/h) to 30 mph
in 5 mph increments; and data were aggregated at 20-sec, 1-min,
3-min, 5-min, and 15-min aggregation levels.

Also following Chen et al., a “sustained bottlenecks” filter was
added that smoothes the results of the base algorithm. Even after
data cleaning and aggregation, there remains noise in the data that
can lead to false positives (identifying a bottleneck where none exists)
or false negatives (failing to find a true bottleneck). This filter is
intended to discard transient false positives that are isolated in the
time dimension from other bottleneck detection instances at the same
detector. Similarly, it “fills in” small gaps in bottleneck detection at
a given detector, under the assumption that they are false negatives.
For instance, if several consecutive points in time at a given detector
are classified as bottlenecks, but one point in the middle of these
others fails to register as a bottleneck, the sustained bottleneck 
filter fills in this gap, assuming that it is unlikely for a bottleneck to
deactivate only for a few minutes during heavy congestion.

After the original bottleneck detections are performed, this filter
runs by scanning each detector one at a time and checking to see
whether each detection is part of a sustained, active bottleneck. 
If, within the span of seven consecutive time periods, fewer than
five of those periods include bottleneck detections, the individual
detections in that period are assumed to be false positives and are
deleted. However, if five or more of the seven consecutive time
periods registered as active bottlenecks, then any gaps in between
them are also reregistered as bottleneck detections. This filter smoothes
the data as described, improving overall accuracy. Technically,
Chen et al.’s default values of 5 and 7 are additional parameters and
could undergo optimization as well. However, the authors felt that
this would unnecessarily complicate the multivariate analysis that was
performed.

The analysis so far has focused on automatically identifying the
location and activation times of front-stationary bottlenecks. In
the next step after the “sustained bottlenecks” filter, the algorithm
examines the duration and location of the backward-forming con-
gestion that builds up upstream of the bottlenecks. To locate this
congested area on the speed contour plot, our algorithm steps to the
next detector upstream of each active bottleneck and determines
whether its measured speed is also below the maximum upstream
speed threshold. If this is true, the algorithm continues stepwise
further upstream until a detector is reached with a speed greater than
the threshold. At this point in time and space, the detector is consid-
ered to be free of congestion, but all the detectors downstream
toward the bottleneck are labeled as part of the congested regime for
that time period. It is assumed that such a technique will only find
congestion that is directly caused by an active bottleneck. Thus, the



total congested region on the time–space plane for the corridor under
scrutiny can be combined with measured flow information to estimate
the total delay caused by a given bottleneck. During historical analy-
sis of a recurrent bottleneck, its consequent delay in vehicle hours
could be translated into the financial cost of wasted time and fuel,
environmental cost of pollutant and carbon emissions, etc., caused by
this bottleneck, which could help transportation planners to prioritize
their congestion reduction efforts.

RESULTS

Assessment Indices

Our tests compared the ground truth bottleneck detections against
the bottleneck instances captured by the automated method under
each combination of aggregation level and thresholds for the speed
data. With this sensitivity analysis on the automated method’s
parameters, the authors hoped to achieve a high similarity between
the ground truth bottlenecks and the automated bottleneck detections,
which would indicate that the automated method is successfully
detecting most of the real bottlenecks and few false alarms. Our assess-
ments are measured in terms of several common quality indices and
“summary scores.”

Previous research has used similar indices for evaluating the
accuracy of a congestion reporting system as compared with ground
truth data (17, 18). In particular, the detection rate and false alarm
rate are considered as functions of the input parameter values (and of
the given day’s data set). These indices were chosen to be compatible
with Bogenberger et al. (18), but similar indices are commonly
used in many other settings such as information retrieval or medical
diagnostic test evaluation. In such settings, the detection rate may
be called recall or sensitivity. “Positive predictive value” or “precision”
is defined as 1 minus the false alarm rate.

For each point in the time–space plane, our automated algorithm
decides whether or not there was active bottleneck-related congestion
(at that detector, at that time). Also, for each point in this plane, the
authors know according to ground truth whether the point was truly
congested or not. In other words, all the evaluated points can be
partitioned into true positives (correctly labeled “congested”),
false positives (labeled “congested” but are actually free flow), true
negatives (correctly labeled “free flow”), and false negatives (labeled
“free flow” but are actually congested). Then the detection rate is the
proportion of truly congested points successfully captured by the
automated method. The false alarm rate is the proportion of points
“captured” by the automated method that are not real bottlenecks.
TruePos and FalseNeg are used as the true positive and false negative
quantities, respectively.

Unfortunately, the parameter values that produce a high Detection-
Rate also tend to raise the FalseAlarmRate. For instance, increasing
the maximum upstream speed and decreasing the minimum speed
differential tends to “loosen” the requirements on labeling a point
as congested, so it increases the DetectionRate since the algorithm
is less likely to miss true bottleneck instances. However, it also means

FalseAlarmRate
FalsePos

TruePos FalsePos
=

+( )

DetectionRate
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the algorithm is more likely to detect false alarms and thus the
FalseAlarmRate also increases, which is undesirable. Meanwhile,
at low or no data aggregation (20-s or 1-min data) the noise in 
the data is too high and leads to high FalseAlarmRates, whereas at
a high aggregation (15-min data) the data are so smoothed that 
the algorithm fails to find the real bottlenecks and consequently
has a low DetectionRate. Because optimizing DetectionRate and
FalseAlarmRate separately results in incompatible recommendations,
additional summary scores are necessary for evaluating the effects
of parameter values.

The denominators of the DetectionRate and FalseAlarmRate
are different, so one should not naively add or subtract them to
obtain a single score. However, if the denominators are expected to
be of similar size (as they should be for good values of the param-
eters: the total number of detections ought to be close to the total
number of truly congested points), and if the “cost” of a missed
detection is comparable to the “cost” of a false alarm, then the sum
of DetectionRate + (1 − FalseAlarmRate) can arguably be used as a
reasonable summary score for evaluating algorithm effectiveness.
When these assumptions are not valid, it can still be reasonable to
combine the two indices into a summary score by multiplying them.
A final simple summary score is Accuracy: out of all the points
evaluated, how many were correctly labeled?

High SumScore, ProductScore, and accuracy values would indi-
cate that our automated algorithm is performing well, with high
DetectionRate and low FalseAlarmRate. Using different summary
scores helps to judge the results: if all three agree, then a single result
is best, but otherwise there are clearly tradeoffs to be made.

Statistical Analysis of Results

A statistical analysis of variance was performed independently for each
of the three score functions (SumScore, ProductScore, and Accuracy),
treating our results as the output of a three-factor, five-level full
factorial experiment with 24 replications (one for each sample day).
The terms of the analysis of variance (ANOVA) model included all
three main effects, all three two-way interactions, and the three-way
interaction. For example, the ANOVA table for the values of the
SumScore score function is reproduced in Table 1.

The variation in the scores was partitioned differently for each
score function, but in each case the ANOVA results showed that each
of the main effects and at least one of the two-way interactions were
highly significant. In other words, changing two factors at once does
not necessarily have the same effect as changing each factor sepa-
rately one at a time. Thus, it is misleading to select the factor values
that independently have the most desirable main effects; instead,
it is necessary to compare all possible sets of parameter settings.
SumScore had the simplest analysis: since only one two-way inter-
action was significant (aggregation × minimum speed differential),
the parameter that is not involved in the interaction (maximum
upstream speed) could be optimized at 35 mph and then the remain-
ing two-way interaction can be viewed on a simple graph, shown

accuracy
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in Figure 4a. This figure makes it clear that the highest average
SumScore at 35 mph (56 km/h) MaxUpstreamSpeed occurs for 3-min
Aggregation with essentially a tie between 10 mph (16 km/h) and
15 mph (24 km/h) MinSpeedDifferential. Since the other two
summary scores involved several significant two-way interactions,
their analysis requires the full interaction plot matrices, shown for
ProductScore in Figure 4b and for accuracy in Figure 4c. (In those sub-
figures, the top-left-hand interaction plot is comparable to Figure 4a.)
These subfigures seem to show that 35 mph MaxUpstreamSpeed,
15 mph MinSpeedDifferential, and 3-min Aggregation is also close
to optimal, but it is not as clear.

As it turned out, each score function was optimized at a slightly
different set of the three parameters, but in each case the second-best
setting was the same as in our earlier work (2): 3-min data aggregation
level, 15 mph minimum speed differential, and 35 mph maximum
upstream speed. Statistical pairwise-comparison in each of the three
ANOVAs showed that the best and second-best settings were never
significantly different: for the sake of agreement among the three
score functions and for continuity with a previous paper, the authors
saw no significant reason to change the reported optimal settings. For
each index, the differences between the optimal and second-to-optimal
score were no greater than 0.0005.

Hence, the original Chen et al. settings used for the San Diego data
(20 mph minimum speed differential, 40 mph maximum upstream
speed, and 5-min aggregation) are close to, but not the same as, the
optimal settings for this Portland freeway [15 mph (24 km/h) dif-
ferential, 35 mph (56 km/h) maximum upstream speed, and 3-min
aggregation]. This kind of discrepancy between cities is unsurprising
when using such parametric methods. Researchers and transportation
operations analysts in other cities wishing to implement a system
using the Chen et al. algorithm should perform a similar analysis to
configure the optimal parameter settings for their own network.

Lane-By-Lane Analysis

A further extension of the bottleneck detection algorithm was
attempted, and used the data from individual lanes in the freeway
corridor. As described above, measurements from multiple lanes had
so far been aggregated using simple arithmetic averaging (henceforth
referred to as the “all-lanes-pooled” algorithm). This can obscure
the true traffic pattern when the lanes are not all equally congested.
Thus, the authors tested the process of analyzing each lane separately
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and then having the lanes “vote” on whether or not bottleneck-related
congestion is active. It was thought that lane-by-lane analysis may
improve the algorithm’s sensitivity and lead to greater agreement
with the ground truth.

The authors decided to test four voting schemes that seemed
likely to improve performance. At each moment at each detector, the
roadway is labeled as congested if lane-by-lane analysis detects
congestion in:

1. At least one of the lanes,
2. At least two of the three lanes (or at least one lane if there are

only two lanes),
3. At least two of the three lanes (or both lanes if there are only

two lanes), and
4. All three lanes.

For each of the 24 ground truth days, the authors analyzed the day’s
data using each lane-by-lane voting method. As expected, voting
Method A tended to label more points as congested, so it tended to
increase the DetectionRate but also the FalseAlarmRate. Method D
had the opposite effect. Methods B and C are two variants of the
same rule, differing only for the detectors where the freeway is only
two lanes wide. Neither of these two voting methods tended to affect
the DetectionRate or FalseAlarmRate much.

As it turned out, none of the methods led to meaningful
improvements. Only Method A had a consistently positive change
in DetectionRate, but the maximum increase for a given day was only
4 percentage points, and the corresponding rise in FalseAlarmRate
outweighed the benefits of the increased DetectionRate. The maximum
reduction for a given day in FalseAlarmRate was only 2 percentage
points, under Method D, and again this was outweighed by the
corresponding drop in DetectionRate for Method D. Finally, under
Methods B and C, improvements were too small and inconsistent to
be worth the doubled or tripled processing time needed to analyze
each lane separately. Thus, lane-by-lane analysis is not a practical
extension to this congestion tracking tool.

Evaluation of Fundamental Diagrams

To generate more ideas on how to improve the algorithm, funda-
mental diagrams were constructed for various detectors on several
analyzed days, such as in Figure 5. The points on these diagrams
were coded to show where errors occurred. In this figure, there is a
clear cluster of false negatives (squares), which were instances of
congestion according to the ground truth but which were not detected
by our speed-based algorithm. Because the false negatives cluster
together in the flow–occupancy plane, incorporating rules about flow
or occupancy might improve the algorithm’s ability to classify such
observations correctly. For example, perhaps the optimal speed thresh-
olds are different above a certain occupancy threshold. This potentially
promising improvement will require more detailed analysis.

ADDITIONAL APPLICATIONS

Shockwave Speed Estimation

Our previous paper (2) illustrated how, after detection of a bottle-
neck and its associated upstream congested regime, one can com-
pute the slope of the backward-forming shockwave edge (as shown
in Figure 2), which is the speed of the queue propagation. In that
paper algorithmically derived shockwave speeds were compared

TABLE 1 Analysis of Variance for SumScore

Source DF SS MS F P

Day 23 62.45 2.72 385.18 0.000

Aggregation 4 1.23 0.31 43.75 0.000

Min. speed difference 4 2.67 0.67 94.84 0.000

Max. upstream speed 4 7.05 1.76 250.14 0.000

Agg × MinDiff 16 0.34 0.02 3.04 0.000

Agg × MaxUpstream 16 0.10 0.01 0.91 0.562

MinDiff × MaxUpstream 16 0.08 0.01 0.74 0.756

Agg × MinDiff × 64 0.24 0.00 0.54 0.999
MaxUpstream

Error 2,852 20.10 0.01

Total 2,999 94.28

NOTE: S = 0.08396; R2 = 78.7%; R2(adj) = 77.6%.
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FIGURE 4 (a) Interaction plot for SumScore after MaxUpstreamSpeed is optimized, (b) full interaction plot
matrix for ProductScore, and (c) full interaction plot matrix for Accuracy.



against those found using the ground truth data. The algorithm’s
results tended to be close to the ground truth but occasionally over-
estimated the propagation speed. With additional work to improve
accuracy, the bottleneck detection tool could measure real-time
queue propagation speed to estimate when the bottleneck-related
congestion will affect traffic at a given point upstream.

Visualizing Years of Data

One immediate benefit of automatic detection of bottlenecks is the
ability to process large amounts of historical data. The authors have
analyzed 1,000 days of the I-5N corridor to detect the most frequent
bottleneck activation sites. First each day is iterated independently
to find activation sites and the extent of a bottleneck. The collection
is then analyzed to see which bottleneck sites were active with fre-
quency above a certain threshold. In Figure 6, the bottleneck sites
that are active at least 25% of the time, at least 40% of the time, and
at least 75% of the time are shown. By varying the threshold, a visu-
alization of a particular corridor’s most active bottleneck sites is also
produced. The historical percentile methodology (perhaps coupled
with incident information) also makes it possible to distinguish
between recurrent and nonrecurrent congestion. In this case, there
are several recurrent bottlenecks but the northernmost afternoon
bottleneck near Jantzen Beach is active most often. Clearly, this is
a useful tool for performance measurement and has potential to be
used for predicting conditions in real time.

CONCLUSIONS

This paper performed a detailed graphical and statistical analysis to
test the best combination of parameters toward implementing an
automated bottleneck detection procedure in Portland, Oregon. The
paper also presented a useful implementation that detects bottleneck
activations and deactivations; considers their persistence over time;
traces and maps resulting congestion upstream; analyzes historical
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congestion patterns; and measures shock propagation velocities.
Based on a rigorous and detailed comparison with ground truth data, it
appears that the procedures can be extended to the remaining freeway
corridors in Portland. In terms of traffic information, appropriate
quality assessment criteria should characterize the timeliness of
traffic messages and their consistency with the traffic situation
that would be experienced by the driver on a given route. This
paper presents information that will be useful in the planning and
operations environment but also to travelers, by mapping recurrent
congestion in time and space. It is clear that each user’s optimal
choice of thresholds and data aggregation level will depend on
variable factors in terms of geography, traffic pattern, and driver
behaviors in a certain region.

FUTURE WORK

The promising results described here are leading to additional research
toward automating the process of identifying bottlenecks on Portland
freeways. One next step consists of comparing the percentiles of
congestion area by day of the week and by weather or seasonal
conditions, using additional historical data. A further step is to
incorporate volume data from PORTAL for quantifying total delay
caused by such recurrent bottlenecks that can be translated into
the cost of externalities such as time wasted, fuel consumption, and
emissions unnecessarily produced by these bottlenecks. The auto-
mated method in this paper should also be evaluated with regard to
real-time bottleneck detection and future bottleneck forecasting.

When this bottleneck detection tool is fully implemented in
PORTAL, users will be able to make such comparisons and explore
what might be causing this congestion. This will facilitate some
simple forecasting that can be shown on the time–space speed plots
as the loop detector live feed proceeds. Finally, the reliability of travel
time predictions on a given corridor may be more important than the
travel times themselves for travelers, shippers, and transportation
managers. Thus, in addition to identifying recurrent bottlenecks
using measures of delay, the authors plan to provide measures of
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reliability such as 95th percentile travel time, buffer index, planning
time index, travel time index, and congestion frequency.
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FIGURE 6 Bottleneck activation sites (with darkness
proportional to frequency of recurrence): (a) recurrence
>25%, (b) recurrence >40%, and (c) recurrence >75%.


