Other students’ views on CMU’s Statistics department

(1) There are a couple of nice posts on Quora answering “What is it like to be a graduate student in Statistics at CMU?”
(If you don’t want to sign in to Quora, you might be able to read the replies through these direct links: Jack, Alex, Sangwon.)

(2) When I was applying to schools, a fellow PhD student here shared his thoughts about CMU’s Statistics department. He kindly allowed me to share his comments here as a guest post, though he warns it may be a year or two out of date.

In probably all graduate programs, but at least at CMU, graduate study consists of a coursework component and a research component. (You can see the curriculum here, and while they keep tweaking it, this looks like it’s more or less up to date.) As you can see, the balance starts out tilted heavily toward coursework and gradually starts to shift toward research, so that by your fourth semester you are mostly doing research. This makes sense – it would be tough to do much research-wise without at least some foundational methodological and theoretical training.

A key component of the easing-in process is the well-designed but not particularly well-named Advanced Data Analysis (“ADA”) course, which is a yearlong project spanning your second and third semesters. In this, you choose a professor to work with (they all give presentations about their work first semester to give you a sense of whom to choose), and this professor arranges a relationship with an outside investigator — a “real scientist”, not a statistician, usually in some other department at CMU or Pitt — who has data for you to analyze. Then the three (or more) of you work on the problem of analyzing that data for a year, meeting relatively frequently to discuss progress and whatever issues may arise. You also produce reports and presentations on the project as milestones.

So I’m now at the beginning of my second year, in the midst of my ADA project as well as the Advanced Stat Theory class. To give you a sense of an ADA project, I am working with two professors from Stats and one from CMU Astrophysics on a data set consisting of galaxies, trying to develop predictive models for galaxy redshift purely by analyzing these images. Other ADA projects right now include applications to educational testing, the genetic basis of autism, and medical studies of dementia.

So with that said, while I’m not in the full-blown research part of the PhD, I’ve still had the opportunity to work closely with professors and it has been very fruitful. They tend to be accessible and willing to meet as often as I want to, which tends to be once a week or every other week. My experience with research is that we’ll meet and talk about stuff, then I’ll go home and try whatever new stuff is suggested, and when I have something to show or have hit a wall, we meet again to talk about it. I’ve also started going to the meetings of the Astrostatistics group, which is a collaborative research effort between CMU Stats, CMU Astrophysics, and Pitt Astronomy, and hearing about all the research that’s being done in that setting.

I think the way CMU structures the research experience speaks to how much emphasis it places on acclimating you to that environment, which is really quite different from the classroom. Regarding the coursework component, most of the classes I’ve had here have been well-taught, and the professors hold office hours and generally welcome student inquiry. I think the professors, for the most part, do an admirable job of juggling their research and teaching without short-changing one piece or the other. I’ve definitely learned a ton from classes, which is important because my background in statistics was rather weak coming in. (I had a solid foundation in Math and CS, but not a ton of exposure to Stats.)

Regarding the distinguishing qualities of the program, there are a few. Among the spectrum of theoretical vs. applied programs, it tends to skew applied — there are a few people doing theory but many more working on applications to various fields. (This could be a good thing or a bad thing depending on your taste.) But if you ask people here, they might say the distinction between theoretical and applied work is kind of silly, since advances in theory can yield new methodology and novel applications can motivate development of theory. But anyhow, given that professors do a lot of applied work, there are fertile collaborations here with quite a few disciplines — astrostatistics as I mentioned, neuroscience, CS/machine learning, genetics, even some people working on finance/economics problems. So it’s not limiting at all in terms of what you can work on.

Another good thing about the program is that it’s pretty current and (you might say) somewhat pragmatic. For instance, they just revamped our Advanced Stat Theory core course to be taught with a huge focus on nonparametric inference instead of the canonical/classical inference theory, because it turns out that most people in real-world research settings are using nonparametric methods much more. In general, it’s great when a department recognizes that a field is evolving (rapidly!) and they are willing to adapt to cover what will be useful for students rather than what they became famous for writing books about in the ’70s.

That’s all I can think of now. Best of luck with the application process!

2 Responses to Other students’ views on CMU’s Statistics department

  1. Hi Jerzy,
    It is so late for me to know you and your blog posts. They are really helpful and detailed. I am going to CMU’s statistics department for masters. Hope we can meet up there!

    And I would like to seek your advice in better preparing for the incoming busy academic year and job hunting.

    Cheers,

    Surah

    • Thanks, Surah. Congratulations, and I’m sure we’ll meet once you are here for the program.
      I don’t have much advice on preparing for the MSP, but I will try to ask some of the recent grads if they have any advice.
      Cheers!

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>