Tapestry 2016 conference: overview and keynote speakers

Overview

Encouraged by Robert Kosara’s call for applications, I attended the Tapestry 2016 conference two weeks ago. As advertised, it was a great chance to meet others from all over the data visualization world. I was one of relatively few academics there, so it was refreshing to chat with journalists, industry analysts, consultants, and so on. (Journalists were especially plentiful since Tapestry is the day before NICAR, the Computer-Assisted Reporting Conference.) Thanks to the presentations, posters & demos, and informal chats throughout the day, I came away with new ideas for improving my dataviz course and my own visualization projects.

I also presented a poster and handout on the course design for my Fall 2015 dataviz class. It was good to get feedback from other people who’ve taught similar courses, especially on the rubrics and assessment side of things.

The conference is organized and sponsored by the folks at Tableau Software. Although I’m an entrenched R user myself, I do appreciate Tableau’s usefulness in bringing the analytic approach of the grammar of graphics to people who aren’t dedicated programmers. To help my students and collaborators, I’ve been meaning to learn to use Tableau better myself. Folks there told me I should join the Pittsburgh Tableau User Group and read Dan Murray’s Tableau Your Data!.

Below are my notes on the three keynote speakers: Scott Klein on the history of data journalism, Jessica Hullman on research into story patterns, and Nick Sousanis on comics and visual thinking vs. traditional text-based scholarship.
My next post will continue with notes on the “short stories” presentations and some miscellaneous thoughts.

Continue reading “Tapestry 2016 conference: overview and keynote speakers”

Are you really moving to Canada?

It’s another presidential election year in the USA, and you know what that means: Everyone’s claiming they’ll move to Canada if the wrong candidate wins. But does anyone really follow through?

Anecdotal evidence: Last week, a Canadian told me she knows at least a dozen of her friends back home are former US citizens who moved, allegedly, in the wake of disappointing election results. So perhaps there’s something to this claim/threat/promise?

Statistical evidence: Take a look for yourself.

MovingToCanada

As a first pass, I don’t see evidence of consistent, large spikes in migration right after elections. The dotted vertical lines denote the years after an election year, i.e. the years where I’d expect spikes if this really happened a lot. For example: there was a US presidential election at the end of 1980, and the victor took office in 1981. So if tons of disappointed Americans moved to Canada afterwards, we’d expect a dramatically higher migration count during 1981 than 1980 or 1982. The 1981 count is a bit higher than its neighbors, but the 1985 is not, and so on. Election-year effects alone don’t seem to drive migration more than other factors.

What about political leanings? Maybe Democrats are likely to move to Canada after a Republican wins, but not vice versa? (In the plot, blue and red shading indicate Democratic and Republican administrations, respectively.) Migration fell during the Republican administrations of the ’80s, but rose during the ’00s. So, again, the victor’s political party doesn’t explain the whole story either.

I’m not an economist, political scientist, or demographer, so I won’t try to interpret this chart any further. All I can say is that the annual counts vary by a factor of 2 (5,000 in the mid-’90s, compared to 10,000 around 1980 or 2010)… So the factors behind this long-term effect seems to be much more important than any possible short-term election-year effects.

Extensions: Someone better informed than myself could compare this trend to politically-motivated migration between other countries. For example, my Canadian informant told me about the Quebec independence referendum, which lost 49.5% to 50.5%, and how many disappointed Québécois apparently moved to France afterwards.

Data notes: I plotted data on permanent immigrants (temporary migration might be another story?) from the UN’s Population Division, “International Migration Flows to and from Selected Countries: The 2015 Revision.” Of course it’s a nontrivial question to define who counts as an immigrant. The documentation for Canada says:

International migration data are derived from administrative sources recording foreigners who were granted permission to reside permanently in Canada. … The number of immigrants is subject to administrative corrections made by Citizenship and Immigration Canada.

Lunch with ASA president Jessica Utts

The president of the American Statistical Association, Jessica Utts, is speaking tonight at the Pittsburgh ASA Chapter meeting. She stopped by CMU first and had lunch with us grad students here.

LOGO FINALBRAND_Tagline under

First of all, I recommend reading Utts’ Comment on statistical computing, published 30 years ago. She mentioned a science-fiction story idea about a distant future (3 decades later, i.e. today!) in which statisticians are forgotten because everyone blindly trusts the black-box algorithm into which we feed our data. Of course, at some point in the story, it fails dramatically and a retired statistician has to save the day.
Utts gave good advice on avoiding that dystopian future, although some folks are having fun trying to implement it today—see for example The Automatic Statistician.
In some ways, I think that this worry (of being replaced by a computer) should be bigger in Machine Learning than in Statistics. Or, perhaps, ML has turned this threat into a goal. ML has a bigger culture of Kaggle-like contests: someone else provides data, splits it into training & test sets, asks a specific question (prediction or classification), and chooses a specific evaluation metric (percent correctly classified, MSE, etc.) David Donoho’s “50 years of Data Science” paper calls this the Common Task Framework (CTF). Optimizing predictions within this framework is exactly the thing that an Automatic Statistician could, indeed, automate. But the most interesting parts are the setup and interpretation of a CTF—understanding context, refining questions, designing data-collection processes, selecting evaluation metrics, interpreting results… All those fall outside the narrow task that Kaggle/CTF contestants are given. To me, such setup and interpretation are closer to the real heart of statistics and of using data to learn about the world. It’s usually nonsensical to even imagine automating them.

Besides statistical computing, Utts has worked on revamping statistics education more broadly. You should read her rejoinder to George Cobb’s article on rethinking the undergrad stats curriculum.

Utts is also the Chief Reader for grading the AP Statistics exams. AP Stats may need to change too, just as the undergraduate stats curriculum is changing… but it’s a much slower process, partly because high school AP Stats teachers aren’t actually trained in statistics the way that college and university professors are. There are also issues with computer access: even as colleges keep moving towards computer-intensive methods, in practice it remains difficult for AP Stats to assess fairly anything that can’t be done on a calculator.

Next, Utts told us that the recent ASA statement on p-values was inspired as a response to the psychology journal, BASP, that banned them. I think it’s interesting that the statement is only on p-values, even though BASP actually banned all statistical inference. Apparently it was difficult enough to get consensus on what to say about p-values alone, without agreeing on what to say about alternatives (e.g. publishing intervals, Bayesian inference, etc.) and other related statistical concepts (especially power).

Finally, we had a nice discussion about the benefits of joining the ASA: networking, organizational involvement (it’s good professional experience and looks good on your CV), attending conferences, joining chapters and sections, getting the journals… I learned that the ASA website also has lesson plans and teaching ideas, which seems quite useful. National membership is only $18 a year for students, and most local chapters or subject-matter sections are cheap or free.

The ASA has also started a website Stats.org for helping journalists understand, interpret, and report on statistical issues or analyses. If you know a journalist, tell them about this resource. If you’re a statistician willing to write some materials for the site, or to chat with journalists who have questions, go sign up.

Tapestry 2016 materials: LOs and Rubrics for teaching Statistical Graphics and Visualization

Here are the poster and handout I’ll be presenting tomorrow at the 2016 Tapestry Conference.

Poster "Statistical Graphics and Visualization: Course Learning Objectives and Rubrics"

My poster covers the Learning Objectives that I used to design my dataviz course last fall, along with the grading approach and rubric categories that I used for assessment. The Learning Objectives were a bit unusual for a Statistics department course, emphasizing some topics we teach too rarely (like graphic design). The “specs grading” approach1 seemed to be a success, both for student motivation and for the quality of their final projects.

The handout is a two-sided single page summary of my detailed rubrics for each assignment. By keeping the rubrics broad (and software-agnostic), it should be straightforward to (1) reuse the same basic assignments in future years with different prompts and (2) port these rubrics to dataviz courses in other departments.

I had no luck finding rubrics for these learning objectives when I was designing the course, so I had to write them myself.2 I’m sharing them here in the hopes that other instructors will be able to reuse them—and improve on them!

Any feedback is highly appreciated.


Footnotes:

PolicyViz episode on teaching data visualization

When I was still in DC, I knew Jon Schwabish’s work designing information and data graphics for the Congressional Budget Office. Now I’ve run across his podcast and blog, PolicyViz. There’s a lot of good material there.

I particularly liked a recent podcast episode that was a panel discussion about teaching dataviz. Schwabish and four other experienced instructors talked about course design, assignments and assessment, how to teach implementation tools, etc.

I recommend listening to the whole thing. Below are just notes-to-self on the episode, for my own future reference.

Continue reading “PolicyViz episode on teaching data visualization”